RESUMEN
Previous studies suggested that severe epilepsies, e.g., developmental and epileptic encephalopathies (DEEs), are mainly caused by ultra-rare de novo genetic variants. For milder disease, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 control individuals. Here, we separately analyzed three different groups of epilepsies: severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in control individuals with an allele count ≥ 1 and a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD ≥ 20), and to have an odds ratio in individuals with epilepsy ≥ 2. We identified genes enriched with QRVs primarily in NAFE (n = 72), followed by GGE (n = 32) and DEE (n = 21). This suggests that rare variants may play a more important role for causality of NAFE than for DEE. Moreover, we found that genes harboring QRVs, e.g., HSGP2, FLNA, or TNC, encode proteins that are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE that occur also in the general population, while in DEE and GGE, the contribution of such variants appears more limited.
Asunto(s)
Epilepsia Generalizada , Humanos , Epilepsia Generalizada/genética , Fenotipo , Alelos , Encéfalo , Frecuencia de los Genes/genéticaRESUMEN
With the increasing prevalence of age-related chronic diseases burdening healthcare systems, there is a pressing need for innovative management strategies. Our study focuses on the gut microbiota, essential for metabolic, nutritional, and immune functions, which undergoes significant changes with aging. These changes can impair intestinal function, leading to altered microbial diversity and composition that potentially influence health outcomes and disease progression. Using advanced metagenomic sequencing, we explore the potential of personalized probiotic supplements in 297 older adults by analyzing their gut microbiota. We identified distinctive Lactobacillus and Bifidobacterium signatures in the gut microbiota of older adults, revealing probiotic patterns associated with various population characteristics, microbial compositions, cognitive functions, and neuroimaging results. These insights suggest that tailored probiotic supplements, designed to match individual probiotic profile, could offer an innovative method for addressing age-related diseases and functional declines. Our findings enhance the existing evidence base for probiotic use among older adults, highlighting the opportunity to create more targeted and effective probiotic strategies. However, additional research is required to validate our results and further assess the impact of precision probiotics on aging populations. Future studies should employ longitudinal designs and larger cohorts to conclusively demonstrate the benefits of tailored probiotic treatments.
Asunto(s)
Envejecimiento , Suplementos Dietéticos , Microbioma Gastrointestinal , Probióticos , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Humanos , Anciano , Femenino , Masculino , Anciano de 80 o más Años , Persona de Mediana Edad , Lactobacillus/genética , Metagenómica/métodos , BifidobacteriumRESUMEN
BACKGROUND: The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off-target effects, making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple models are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy. METHODS: In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling pathway and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We also performed functional analysis, survival analysis, and a case study of triple-negative breast cancer to demonstrate our model's potential in translational cancer medicine. RESULTS: Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The downstream analysis showed that the identified genes are typically involved in the canonical NFκB-regulated pathways, particularly in adaptive immunity, anti-apoptosis, and cellular response to cytokine stimuli. These genes were found to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients with a specific cancer subtype, triple-negative breast cancer (TNBC), which is known to be influenced by NFκB-regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation was identified that accurately predicts TNBC patients and poor short-term survival in non-TNBC patients, providing a potential avenue for developing precision medicine for cancer subtypes. CONCLUSIONS: In conclusion, our approach enables the discovery of genes in NFκB-regulated pathways in response to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, providing valuable insights for discovering more precise and targeted cancer therapeutics.
Asunto(s)
FN-kappa B , Neoplasias de la Mama Triple Negativas , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/uso terapéutico , Transducción de Señal/genética , Carcinogénesis , Aprendizaje AutomáticoRESUMEN
BACKGROUND: RNA-seq emerges as a valuable method for clinical genetics. The transcriptome is "dynamic" and tissue-specific, but typically the probed tissues to analyze (TA) are different from the tissue of interest (TI) based on pathophysiology. RESULTS: We developed Phenotype-Tissue Expression and Exploration (PTEE), a tool to facilitate the decision about the most suitable TA for RNA-seq. We integrated phenotype-annotated genes, used 54 tissues from GTEx to perform correlation analyses and identify expressed genes and transcripts between TAs and TIs. We identified skeletal muscle as the most appropriate TA to inquire for cardiac arrhythmia genes and skin as a good proxy to study neurodevelopmental disorders. We also explored RNA-seq limitations and show that on-off switching of gene expression during ontogenesis or circadian rhythm can cause blind spots for RNA-seq-based analyses. CONCLUSIONS: PTEE aids the identification of tissues suitable for RNA-seq for a given pathology to increase the success rate of diagnosis and gene discovery. PTEE is freely available at https://bioinf.eva.mpg.de/PTEE/.
Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Fenotipo , RNA-Seq , Análisis de Secuencia de ARNRESUMEN
BACKGROUND: Elucidation of lipid metabolism and accumulation mechanisms is of paramount importance to understanding obesity and unveiling therapeutic targets. In vitro cell models have been extensively used for these purposes, yet, they do not entirely reflect the in vivo setup. Conventional lipomas, characterized by the presence of mature adipocytes and increased adipogenesis, could overcome the drawbacks of cell cultures. Also, they have the unique advantage of easily accessible matched controls in the form of subcutaneous adipose tissue (SAT) from the same individual. We aimed to determine whether lipomas are a good model to understand lipid accumulation. METHODS: We histologically compared lipomas and control SAT, followed by assessment of the lipidome using high-resolution 1H NMR spectroscopy and ESI-IT mass spectrometry. RNA-sequencing was used to obtain the transcriptome of lipomas and the matched SAT. RESULTS: We found a significant increase of small-size (maximal axis < 70 µm) and very big (maximal axis > 150 µm) adipocytes within lipomas. This suggests both enhanced adipocyte proliferation and increased lipid accumulation. We further show that there is no significant change in the lipid composition compared to matched SAT. To better delineate the pathophysiology of lipid accumulation, we considered two groups with different genetic backgrounds: (1) lipomas with HMGA2 fusions and (2) without gene fusions. To reduce the search space for genes that are relevant for lipid pathophysiology, we focused on the overlapping differentially expressed (DE) genes between the two groups. Gene Ontology analysis revealed that DE genes are enriched in pathways related to lipid accumulation. CONCLUSIONS: We show that the common shared lipid accumulation mechanism in lipoma is a reduction in lipolysis, with most gene dysregulations leading to a reduced cAMP in the adipocyte. Superficial lipomas could thus be used as a model for lipid accumulation through altered lipolysis as found in obese patients.
Asunto(s)
Lipólisis/fisiología , Lipoma , Modelos Biológicos , Obesidad/metabolismo , Adipocitos/citología , Adulto , Anciano , Femenino , Humanos , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Lipoma/metabolismo , Lipoma/fisiopatología , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas/genética , Grasa Subcutánea/metabolismo , Transcriptoma/genéticaRESUMEN
The development of disease involves a systematic disturbance inside cells and is associated with changes in the interactions or regulations among genes forming biological networks. The bridges inside a network are critical in shortening the distances between nodes. We observed that, inside the human gene regulatory network, one strongly connected core bridged the whole network. Other regulations outside the core formed a weakly connected component surrounding the core like a peripheral structure. Furthermore, the regulatory feedback loops (FBLs) inside the core compose an interface-like structure between the core and periphery. We then denoted the regulatory FBLs as the interface core. Notably, both the cancer-associated and essential biomolecules and regulations were significantly overrepresented in the interface core. These results implied that the interface core is not only critical for the network structure but central in cellular systems. Furthermore, the enrichment of the cancer-associated and essential regulations in the interface core might be attributed to its bridgeness in the network. More importantly, we identified one regulatory FBL between HNF4A and NR2F2 that possesses the highest bridgeness in the interface core. Further investigation suggested that the disturbance of the HNF4A-NR2F2 FBL might protect tumor cells from apoptotic processes. Our results emphasize the relevance of the regulatory network properties to cellular systems and might reveal a critical role of the interface core in cancer.
Asunto(s)
Carcinogénesis/genética , Redes Reguladoras de Genes , Humanos , Neoplasias/genéticaRESUMEN
The genes influencing cancer patient mortality have been studied by survival analysis for many years. However, most studies utilized them only to support their findings associated with patient prognosis: their roles in carcinogenesis have not yet been revealed. Herein, we applied an in silico approach, integrating the Cox regression model with effect size estimated by the Monte Carlo algorithm, to screen survival-influential genes in more than 6000 tumor samples across 16 cancer types. We observed that the survival-influential genes had cancer-dependent properties. Moreover, the functional modules formed by the harmful genes were consistently associated with cell cycle in 12 out of the 16 cancer types and pan-cancer, showing that dysregulation of the cell cycle could harm patient prognosis in cancer. The functional modules formed by the protective genes are more diverse in cancers; the most prevalent functions are relevant for immune response, implying that patients with different cancer types might develop different mechanisms against carcinogenesis. We also identified a harmful set of 10 genes, with potential as prognostic biomarkers in pan-cancer. Briefly, our results demonstrated that the survival-influential genes could reveal underlying mechanisms in carcinogenesis and might provide clues for developing therapeutic targets for cancers.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinogénesis/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias/mortalidad , Transcriptoma , Carcinogénesis/genética , Carcinogénesis/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/patología , Pronóstico , Tasa de SupervivenciaRESUMEN
Transcription factor and microRNA (miRNA) can mutually regulate each other and jointly regulate their shared target genes to form feed-forward loops (FFLs). While there are many studies of dysregulated FFLs in a specific cancer, a systematic investigation of dysregulated FFLs across multiple tumor types (pan-cancer FFLs) has not been performed yet. In this study, using The Cancer Genome Atlas data, we identified 26 pan-cancer FFLs, which were dysregulated in at least five tumor types. These pan-cancer FFLs could communicate with each other and form functionally consistent subnetworks, such as epithelial to mesenchymal transition-related subnetwork. Many proteins and miRNAs in each subnetwork belong to the same protein and miRNA family, respectively. Importantly, cancer-associated genes and drug targets were enriched in these pan-cancer FFLs, in which the genes and miRNAs also tended to be hubs and bottlenecks. Finally, we identified potential anticancer indications for existing drugs with novel mechanism of action. Collectively, this study highlights the potential of pan-cancer FFLs as a novel paradigm in elucidating pathogenesis of cancer and developing anticancer drugs.
Asunto(s)
Neoplasias , Transición Epitelial-Mesenquimal , Redes Reguladoras de Genes , Humanos , MicroARNs , Factores de TranscripciónRESUMEN
Dendritic cells (DCs) are specifically equipped with the G protein-coupled receptor 34 (GPR34). Tight regulation of GPR34 gene expression seems highly important for proper immunological functions, because the absence of this receptor leads to an alteration of the immune response, whereas overexpression was reported to be involved in neuroinflammation. However, the regulatory mechanism of GPR34 expression has not yet been investigated. Whole-transcriptome RNA sequencing analysis from spleens and DCs of GPR34 knockout and wild-type mice, combined with protein-protein interaction data, revealed functional modules affected by the absence of this receptor. Among these, NF-κB, MAPK, and apoptosis-signaling pathways showed high significance. Using murine DCs we experimentally show that NF-κB and MAPK pathways are involved in the downregulation of GPR34. DCs lacking GPR34 have a higher caspase-3/7 activity and increased apoptosis levels. Our study reveals a novel role of GPR34 in the fate of DCs and identifies a regulatory mechanism that could be relevant for treatment of GPR34-overexpressing pathologies, such as neuroinflammatory or cancer conditions.
Asunto(s)
Apoptosis/inmunología , Células Dendríticas/inmunología , Receptores Lisofosfolípidos/inmunología , Animales , Western Blotting , Citometría de Flujo , Regulación de la Expresión Génica/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
A precursor microRNA (miRNA) has two arms: miR-5p and miR-3p (miR-5p/-3p). Depending on the tissue or cell types, both arms can become functional. However, little is known about their coregulatory mechanisms during the tumorigenic process. Here, by using the large-scale miRNA expression profiles of five cancer types, we revealed that several of miR-5p/-3p arms were concordantly dysregulated in each cancer. To explore possible coregulatory mechanisms of concordantly dysregulated miR-5p/-3p pairs, we developed a robust computational framework and applied it to lung cancer data. The framework deciphers miR-5p/-3p coregulated protein interaction networks critical to lung cancer development. As a novel part in the method, we uniquely applied the second-order partial correlation to minimize false-positive regulations. Using 279 matched miRNA and mRNA expression profiles extracted from tumor and normal lung tissue samples, we identified 17 aberrantly expressed miR-5p/-3p pairs that potentially modulate the gene expression of 35 protein complexes. Functional analyses revealed that these complexes are associated with cancer-related biological processes, suggesting the oncogenic potential of the reported miR-5p/-3p pairs. Specifically, we revealed that the reduced expression of miR-145-5p/-3p pair potentially contributes to elevated expression of genes in the "FOXM1 transcription factor network" pathway, which may consequently lead to uncontrolled cell proliferation. Subsequently, the regulation of miR-145-5p/-3p in the FOXM1signaling pathway was validated by a cohort of 104 matched miRNA and protein (reverse-phase protein array) expression profiles in lung cancer. In summary, our computational framework provides a novel tool to study miR-5p/-3p coregulatory mechanisms in cancer and other diseases.
Asunto(s)
Biología Computacional/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/patología , Transducción de SeñalRESUMEN
Cancer development and progression result from somatic evolution by an accumulation of genomic alterations. The effects of those alterations on the fitness of somatic cells lead to evolutionary adaptations such as increased cell proliferation, angiogenesis, and altered anticancer drug responses. However, there are few general mathematical models to quantitatively examine how perturbations of a single gene shape subsequent evolution of the cancer genome. In this study, we proposed the gene gravity model to study the evolution of cancer genomes by incorporating the genome-wide transcription and somatic mutation profiles of ~3,000 tumors across 9 cancer types from The Cancer Genome Atlas into a broad gene network. We found that somatic mutations of a cancer driver gene may drive cancer genome evolution by inducing mutations in other genes. This functional consequence is often generated by the combined effect of genetic and epigenetic (e.g., chromatin regulation) alterations. By quantifying cancer genome evolution using the gene gravity model, we identified six putative cancer genes (AHNAK, COL11A1, DDX3X, FAT4, STAG2, and SYNE1). The tumor genomes harboring the nonsynonymous somatic mutations in these genes had a higher mutation density at the genome level compared to the wild-type groups. Furthermore, we provided statistical evidence that hypermutation of cancer driver genes on inactive X chromosomes is a general feature in female cancer genomes. In summary, this study sheds light on the functional consequences and evolutionary characteristics of somatic mutations during tumorigenesis by propelling adaptive cancer genome evolution, which would provide new perspectives for cancer research and therapeutics.
Asunto(s)
Genoma Humano/genética , Genómica/métodos , Modelos Genéticos , Mutación/genética , Neoplasias/genética , Bases de Datos Genéticas , Femenino , Humanos , MasculinoRESUMEN
Cells govern biological functions through complex biological networks. Perturbations to networks may drive cells to new phenotypic states, for example, tumorigenesis. Identifying how genetic lesions perturb molecular networks is a fundamental challenge. This study used large-scale human interactome data to systematically explore the relationship among network topology, somatic mutation, evolutionary rate, and evolutionary origin of cancer genes. We found the unique network centrality of cancer proteins, which is largely independent of gene essentiality. Cancer genes likely have experienced a lower evolutionary rate and stronger purifying selection than those of noncancer, Mendelian disease, and orphan disease genes. Cancer proteins tend to have ancient histories, likely originated in early metazoan, although they are younger than proteins encoded by Mendelian disease genes, orphan disease genes, and essential genes. We found that the protein evolutionary origin (age) positively correlates with protein connectivity in the human interactome. Furthermore, we investigated the network-attacking perturbations due to somatic mutations identified from 3,268 tumors across 12 cancer types in The Cancer Genome Atlas. We observed a positive correlation between protein connectivity and the number of nonsynonymous somatic mutations, whereas a weaker or insignificant correlation between protein connectivity and the number of synonymous somatic mutations. These observations suggest that somatic mutational network-attacking perturbations to hub genes play an important role in tumor emergence and evolution. Collectively, this work has broad biomedical implications for both basic cancer biology and the development of personalized cancer therapy.
Asunto(s)
Carcinogénesis/genética , Biología Computacional/métodos , Redes Reguladoras de Genes , Bases de Datos Genéticas , Genes Esenciales , Humanos , Modelos Genéticos , Mutación , Mapeo de Interacción de Proteínas/métodos , Selección GenéticaRESUMEN
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that regulate gene expression either by degrading target mRNAs or by suppressing protein translation. miRNAs have been found to be involved in many biological processes, such as development, differentiation, and growth. However, the evolution of miRNA regulatory functions and networks has not been well studied. In this study, we conducted a cross-species analysis to study the evolution of cardiac miRNAs and their regulatory functions and networks. We found that conserved cardiac miRNA target genes have maintained highly conserved cardiac functions. Additionally, most of cardiac miRNA target genes in human with annotations of cardiac functions evolved from the corresponding homologous targets, which are also involved in heart development-related functions. On the basis of these results, we investigated the functional evolution of cardiac miRNAs and presented a functional evolutionary map. From this map, we identified the evolutionary time at which the cardiac miRNAs became involved in heart development or function and found that the biological processes of heart development evolved earlier than those of heart functions, for example, heart contraction/relaxation or cardiac hypertrophy. Our study of the evolution of the cardiac miRNA regulatory networks revealed the emergence of new regulatory functional branches during evolution. Furthermore, we discovered that early evolved cardiac miRNA target genes tend to participate in the early stages of heart development. This study sheds light on the evolution of developmental features of genes regulated by cardiac miRNAs.
Asunto(s)
Corazón/fisiología , MicroARNs/metabolismo , Miocardio/metabolismo , Animales , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Redes Reguladoras de Genes , Humanos , MicroARNs/genéticaRESUMEN
UNLABELLED: Exploring microRNA (miRNA) regulations and protein-protein interactions could reveal the molecular mechanisms responsible for complex biological processes. Mirin is a web-based application suitable for identifying functional modules from protein-protein interaction networks regulated by aberrant miRNAs under user-defined biological conditions such as cancers. The analysis involves combining miRNA regulations, protein-protein interactions between target genes, as well as mRNA and miRNA expression profiles provided by users. Mirin has successfully uncovered oncomirs and their regulatory networks in various cancers, such as gastric and breast cancer. AVAILABILITY AND IMPLEMENTATION: Mirin is freely available at http://mirin.ym.edu.tw/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Mapeo de Interacción de Proteínas , Programas Informáticos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Redes Reguladoras de Genes , Humanos , ARN Mensajero/metabolismoRESUMEN
Fluorescent liposomal nanovesicles (liposomes) are commonly used for lipid research and/or signal enhancement. However, the problem of self-quenching with conventional fluorescent liposomes limits their applications because these liposomes must be lysed to detect the fluorescent signals. Here, we developed a nonquenched fluorescent (NQF)1 liposome by optimizing the proportion of sulforhodamine B (SRB) encapsulant and lissamine rhodamine B-dipalmitoyl phosphatidylethanol (LRB-DPPE) on a liposomal surface for signal amplification. Our study showed that 0.3% of LRB-DPPE with 200 µm of SRB provided the maximal fluorescent signal without the need to lyse the liposomes. We also observed that the NQF liposomes largely eliminated self-quenching effects and produced greatly enhanced signals than SRB-only liposomes by 5.3-fold. To show their application in proteomics research, we constructed NQF liposomes that contained phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and profiled its protein interactome using a yeast proteome microarray. Our profiling led to the identification of 162 PI(3,5)P2-specific binding proteins (PI(3,5)P2-BPs). We not only recovered many proteins that possessed known PI(3,5)P2-binding domains, but we also found two unknown Pfam domains (Pfam-B_8509 and Pfam-B_10446) that were enriched in our dataset. The validation of many newly discovered PI(3,5)P2-BPs was performed using a bead-based affinity assay. Further bioinformatics analyses revealed that the functional roles of 22 PI(3,5)P2-BPs were similar to those associated with PI(3,5)P2, including vesicle-mediated transport, GTPase, cytoskeleton, and kinase. Among the 162 PI(3,5)P2-BPs, we found a novel motif, HRDIKP[ES]NJLL that showed statistical significance. A docking simulation showed that PI(3,5)P2 interacted primarily with lysine or arginine side chains of the newly identified PI(3,5)P2-binding kinases. Our study showed that this new tool would greatly benefit profiling lipid-protein interactions in high-throughput studies.
Asunto(s)
Metabolismo de los Lípidos , Liposomas/metabolismo , Nanopartículas/química , Análisis por Matrices de Proteínas/métodos , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cromatografía de Afinidad , Biología Computacional , Citoesqueleto/metabolismo , Fluorescencia , GTP Fosfohidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Transporte de Proteínas , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismoRESUMEN
Hemodynamic parameters derived from pulse wave analysis have been shown to predict long-term outcomes in patients with heart failure (HF). Here we aimed to develop a deep-learning based algorithm that incorporates pressure waveforms for the identification and risk stratification of patients with HF. The first study, with a case-control study design to address data imbalance issue, included 431 subjects with HF exhibiting typical symptoms and 1545 control participants with no history of HF (non-HF). Carotid pressure waveforms were obtained from all the participants using applanation tonometry. The HF score, representing the probability of HF, was derived from a one-dimensional deep neural network (DNN) model trained with characteristics of the normalized carotid pressure waveform. In the second study of HF patients, we constructed a Cox regression model with 83 candidate clinical variables along with the HF score to predict the risk of all-cause mortality along with rehospitalization. To identify subjects using the HF score, the sensitivity, specificity, accuracy, F1 score, and area under receiver operating characteristic curve were 0.867, 0.851, 0.874, 0.878, and 0.93, respectively, from the hold-out cross-validation of the DNN, which was better than other machine learning models, including logistic regression, support vector machine, and random forest. With a median follow-up of 5.8 years, the multivariable Cox model using the HF score and other clinical variables outperformed the other HF risk prediction models with concordance index of 0.71, in which only the HF score and five clinical variables were independent significant predictors (p < 0.05), including age, history of percutaneous coronary intervention, concentration of sodium in the emergency room, N-terminal pro-brain natriuretic peptide, and hemoglobin. Our study demonstrated the diagnostic and prognostic utility of arterial waveforms in subjects with HF using a DNN model. Pulse wave contains valuable information that can benefit the clinical care of patients with HF.
Asunto(s)
Insuficiencia Cardíaca , Redes Neurales de la Computación , Humanos , Insuficiencia Cardíaca/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Arterias/diagnóstico por imagen , Modelos de Riesgos Proporcionales , Curva ROC , Medición de Riesgo , Aprendizaje Profundo , Análisis de la Onda del PulsoRESUMEN
UNLABELLED: Deregulation of microRNAs (miRNAs) is common in advanced human hepatocellular carcinoma (HCC); however, the ones involved in early carcinogenesis have not yet been investigated. By examining the expression of 22 HCC-related miRNAs between precancerous and cancerous liver tissues, we found miR-216a and miR-224 were significantly up-regulated, starting from the precancerous stage. Furthermore, the elevation of miR-216a was mainly identified in male patients. To study this gender difference, we demonstrated that pri-miR-216a is activated transcriptionally by the androgen pathway in a ligand-dependent manner and is further enhanced by the hepatitis B virus X protein. The transcription initiation site for pri-miR-216a was delineated, and one putative androgen-responsive element site was identified within its promoter region. Mutation of this site abolished the elevation of pri-miR-216a by the androgen pathway. One target of miR-216a was shown to be the tumor suppressor in lung cancer-1 gene (TSLC1) messenger RNA (mRNA) through the three target sites at its 3' untranslated region. Finally, the androgen receptor level increased in male liver tissues during hepatocarcinogenesis, starting from the precancerous stage, with a concomitant elevation of miR-216a but a decrease of TSLC1. CONCLUSION: The current study discovered the up-regulation of miRNA-216a by the androgen pathway and a subsequent suppression of TSLC1 as a new mechanism for the androgen pathway in early hepatocarcinogenesis.
Asunto(s)
Andrógenos/metabolismo , Carcinoma Hepatocelular/genética , Moléculas de Adhesión Celular/genética , Inmunoglobulinas/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Molécula 1 de Adhesión Celular , Movimiento Celular/fisiología , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Genes Supresores de Tumor/fisiología , Células Hep G2 , Hepatocitos/fisiología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Regiones Promotoras Genéticas/fisiología , Factores Sexuales , Transcripción Genética/fisiologíaRESUMEN
MicroRNAs, which are small endogenous RNA regulators, have been associated with various types of cancer. Breast cancer is a major health threat for women worldwide. Many miRNAs were reported to be associated with the progression and carcinogenesis of breast cancer. In this study, we aimed to discover novel breast cancer-related miRNAs and to elucidate their functions. First, we identified confident miRNA-target pairs by combining data from miRNA target prediction databases and expression profiles of miRNA and mRNA. Then, miRNA-regulated protein interaction networks (PINs) were constructed with confident pairs and known interaction data in the human protein reference database (HPRD). Finally, the functions of miRNA-regulated PINs were elucidated by functional enrichment analysis. From the results, we identified some previously reported breast cancer-related miRNAs and functions of the PINs, e.g., miR-125b, miR-125a, miR-21, and miR-497. Some novel miRNAs without known association to breast cancer were also found, and the putative functions of their PINs were also elucidated. These include miR-139 and miR-383. Furthermore, we validated our results by receiver operating characteristic (ROC) curve analysis using our miRNA expression profile data, gene expression-based outcome for breast cancer online (GOBO) survival analysis, and a literature search. Our results may provide new insights for research in breast cancer-associated miRNAs.
Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/metabolismo , Mapas de Interacción de Proteínas/genética , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , ARN Mensajero/metabolismo , Curva ROC , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND: Colorectal cancer (CRC) is one of the most fatal malignancies worldwide, and this is in part due to high rates of tumor recurrence in these patients. Currently, TNM staging remains the gold standard for predicting prognosis and recurrence in CRC patients; however, this approach is inadequate for identifying high-risk patients with the highest likelihood of disease recurrence. Recent evidence has revealed that enhancer RNAs (eRNAs) represent a higher level of cellular regulation, and their expression is frequently dysregulated in several cancers, including CRC. However, the clinical significance of eRNAs as recurrence predictor biomarkers in CRC remains unexplored, which is the primary aim of this study. RESULTS: We performed a systematic analysis of eRNA expression profiles in colon cancer (CC) and rectal cancer (RC) patients from the TCGA dataset. By using rigorous biomarker discovery approaches by splitting the entire dataset into a training and testing cohort, we identified a 22-eRNA panel in CC and a 19-eRNA panel in RC for predicting tumor recurrence. The Kaplan-Meier analysis showed that biomarker panels robustly stratified low and high-risk CC (p = 7.29 × 10-5) and RC (p = 6.81 × 10-3) patients with recurrence. Multivariate and LASSO Cox regression models indicated that both biomarker panels were independent predictors of recurrence and significantly superior to TNM staging in CC (HR = 11.89, p = 9.54 × 10-4) and RC (HR = 3.91, p = 3.52 × 10-2). Notably, the ROC curves demonstrated that both panels exhibited excellent recurrence prediction accuracy in CC (AUC = 0.833; 95% CI: 0.74-0.93) and RC (AUC = 0.834; 95% CI: 0.72-0.92) patients. Subsequently, a combination signature that included the eRNA panels and TNM staging achieved an even greater predictive accuracy in patients with CC (AUC = 0.85). CONCLUSIONS: Herein, we report a novel eRNA signature for predicting recurrence in patients with CRC. Further experimental validation in independent clinical cohorts, these biomarkers can potentially improve current risk stratification approaches for guiding precision oncology treatments in patients suffering from this lethal malignancy.
Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Humanos , Transcriptoma/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Medicina de Precisión , ARNRESUMEN
Introduction: The microbiota-gut-brain axis is implicated in Alzheimer's disease. Gut microbiota alterations in mild cognitive impairment (MCI) are inconsistent and remain to be understood. This study aims to investigate the gut microbial composition associated with MCI, cognitive functions, and structural brain differences. Methods: A nested case-control study was conducted in a community-based prospective cohort where detailed cognitive functions and structural brain images were collected. Thirty-one individuals with MCI were matched to sixty-five cognitively normal controls by age strata, gender, and urban/rural area. Fecal samples were examined using 16S ribosomal RNA (rRNA) V3-V4 sequencing. Compositional differences between the two groups were identified and correlated with the cognitive functions and volumes/thickness of brain structures. Results: There was no significant difference in alpha and beta diversity between MCIs and cognitively normal older adults. However, the abundance of the genus Ruminococcus, Butyricimonas, and Oxalobacter decreased in MCI patients, while an increased abundance of nine other genera, such as Flavonifractor, were found in MCIs. Altered genera discriminated MCI patients well from controls (AUC = 84.0%) and were associated with attention and executive function. Conclusion: This study provides insights into the role of gut microbiota in the neurodegenerative process.