Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 356: 141878, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582172

RESUMEN

In this study, a sulfur-modified magnetic hydrochar was synthesized by grafting thiol-containing groups onto the sludge-derived hydrochar. The modified hydrochar exhibited effective adsorption of Cu2+, Pb2+, Zn2+, and Cd2+ over a wide pH range and in the presence of coexisting ions, and showed almost no secondary leaching in three acidic solutions. In the mult-metal ion system, the modified hydrochar exhibited maximum adsorption capacities were 39.38, 105.74, 26.53, and 38.11 mg g-1 for Cu2+, Pb2+, Zn2+, and Cd2+, respectively. However, the binding capacity and adsorption amount of modified hydrochar for metal ions were lower in the mult-metal ion system compared to the unit-metal ion system. Notably, Pb2+ showed a strong inhibitory effect on the adsorption of other heavy metal ions by modified hydrochar due to strong competition for xanthate functional groups. The Pb2+ occupied the xanthate and native functional groups (-OH, -NH2, and Fe-O etc.), leaving only a small amount of adsorption sites for Cu2+, Zn2+ and Cd2+. Simulation results further supported these findings, indicating that Pb2+ had the highest density profiles near the four functional groups, and the density profiles of the four heavy metals near the xanthate functional groups were greater compared to the other three functional groups. Furthermore, the SEM-EDS, TOF-SIMI, and XPS results indicated that modified hydrochar achieved excellent mineral binding mainly through electrostatic interaction, ion exchange, and chelation. Overall, these results highlight the sulfur-modified magnetic hydrochar as a highly efficient adsorbent for heavy metals in environmental applications.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Adsorción , Metales Pesados/química , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/química , Minerales/química
2.
Water Res ; 251: 121133, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237463

RESUMEN

Sludge hydrothermal carbonization demonstrates potential for converting sludge into multifunctional carbon materials for soil remediation. However, the influence of dissolved organic matter (DOM) with unclear molecular characteristics in sludge-based hydrothermal carbon on plant growth has not been sufficiently investigated. Herein, the effects of hydrothermal temperature on the molecular transformation pathways and plant-growth-promoting properties of DOM were investigated via FT-ICR MS-based molecular network analyses and seed germination experiments. Results indicated that the highest DOM yield was achieved at 220 °C. During low-temperature (180 °C) hydrothermal treatment, the hydrolysis of biopolymers, as well as the partial condensation and cyclization of small-molecule intermediates, occurred in the sludge. This process produced unsaturated CHNO compounds containing one or two N atoms, which promoted seed germination. Further, the toxicity of DOM to plants increased with rising hydrothermal temperature. This was accompanied by S doping and aromatization reactions, which mitigated the effects of plant growth hormones. This study provides theoretical support for the optimization of sludge hydrothermal treatment and production of plant growth hormones, enhancing the ecological value of sludge-based hydrochar.


Asunto(s)
Materia Orgánica Disuelta , Aguas del Alcantarillado , Temperatura , Carbono , Semillas , Hormonas
3.
J Hazard Mater ; 466: 133566, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246056

RESUMEN

In this study, the remediation effects of two types of sludge (ferric-based flocculant and non-ferric-based flocculant) on Cr(VI)-polluted wastewater were evaluated to clarify the key components in sludge hydrothermal solutions responsible for reducing Cr(VI) and understand the underlying molecular-level transformation mechanisms. The results revealed that the primary reactions during the hydrothermal processes were deamination and decarboxylation reactions. Correlation analysis highlighted proteins, reducing sugars, amino groups, and phenolic hydroxyl groups as the major contributors. In-depth analysis of the transformation process of functional groups within dissolved organic matter (DOM) and synergistic redox process between Cr(VI) and DOM in hydrothermal solutions demonstrated that phenolic hydroxyl and amino groups gradually underwent oxidation during reduction of Cr(VI) by DOM, forming aldehyde and carboxyl groups, among the others. Time-dependent density functional theory calculations revealed notable shift of reducing functional groups from ground state to excited state following iron complexation, ultimately facilitating reduction reaction. Subsequent investigations, including soil column leaching and seed germination rate tests, indicated that synergistic redox interaction between Cr(VI) and DOM significantly reduced waterborne heavy metal and toxic organic pollution. These findings carry substantial implications for sludge treatment and remediation of heavy metal pollution in wastewater, offering valuable insights into effective environmental remediation strategies.

4.
J Colloid Interface Sci ; 671: 601-610, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38820844

RESUMEN

In recent years, aqueous zinc-ion batteries (ZIBs) have emerged as a prominent research topic due to their inherent safety attributes, relatively low cost, and comparatively higher energy density. However, the challenges associated with the zinc metal anode in the form of dendrite formation, hydrogen evolution, and severe side reactions have proven to be particularly vexing. Thus, it is imperative to investigate novel intercalation-type anode materials for ZIBs that exhibit exceptional structural properties and appropriate redox potentials based on conversion mechanisms. In this work, through adding polyvinylpyrrolidone (PVP) surfactant to precursors and tailoring reaction time, hierarchical CuS hollow spheres are successfully constructed by a facile one-step hydrothermal process. When applied as an anode in ZIBs, the hollow hierarchical CuS with large surface area can effectively reduce the transport distance of electrons and Zn2+ and alleviate volume expansion during the insertion/extraction of Zn2+. The hierarchical CuS hollow spheres prepared over 8 h (CuS-8) exhibit a specific capacity of 126 mAh/g and long-term cycle life (1500 cycles) at a current density of 3 A/g. In addition, CuS-8//MnO2@CNTs full-cell shows a capacity retention of 117 mAh/g after 300 cycles at 1 A/g current density, which proves the advantage of hierarchical CuS hollow spheres in serving as an efficient and durable anode material for ZIBs.

5.
J Colloid Interface Sci ; 668: 565-574, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691965

RESUMEN

The escalating global demand for clean energy has spurred substantial interest in sodium-ion batteries (SIBs) as a promising solution for large-scale energy storage systems. However, the insufficient reaction kinetics and considerable volume changes inherent to anode materials present significant hurdles to enhancing the electrochemical performance of SIBs. In this study, hierarchical MoS2/WS2 heterostructures were constructed into dual carbon layers (HC@MoS2/WS2@NC) and assessed their suitability as anodes for SIBs. The internal hard carbon core (HC) and outer nitrogen-doped carbon shell (NC) effectively anchor MoS2/WS2, thereby significantly improving its structural stability. Moreover, the conductive carbon components expedite electron transport during charge-discharge processes. Critically, the intelligently engineered interface between MoS2 and WS2 modulates the interfacial energy barrier and electric field distribution, promoting faster ion transport rates. Capitalizing on these advantageous features, the HC@MoS2/WS2@NC nanocomposite exhibits outstanding electrochemical performance when utilized as an anode in SIBs. Specifically, it delivers a high capacity of 415 mAh/g at a current density of 0.2 A/g after 100 cycles. At a larger current density of 2 A/g, it maintains a commendable capacity of 333 mAh/g even after 1000 cycles. Additionally, when integrated into a full battery configuration with a Na3V2(PO4)3 cathode, the Na3V2(PO4)3//HC@MoS2/WS2@NC full cell delivers a high capacity of 120 mAh/g after 300 cycles at 1 A/g. This work emphasizes the substantial improvement in battery performance that can be attained through the implementation of dual carbon confinement, offering a constructive approach to guide the design and development of next-generation anode materials for SIBs.

6.
Sci Total Environ ; 868: 161532, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36638978

RESUMEN

Co-hydrothermal carbonization (co-HTC) of lignocellulose biomass (LB) and chlorinated waste could produce value-added co-hydrochar while simultaneously removing inorganic metal salts and organic chlorine to the liquid phase. However, there is a lack of understanding of the influence of LB feedstocks on the fuel properties and combustion behaviors of co-hydrochars. Therefore, co-hydrochars derived from co-HTC of pine, bamboo, corncob, wheat stalk, and corn stalk with polyvinyl chloride (PVC) at the mass ratio of 9:1 under 260 °C for 30 min were tested. PVC facilitated the hydrolysis, dehydration, and polymerization of LB compositions (hemicellulose, cellulose, soluble lignin, and insoluble lignin). In turn, these LB compositions could prevent PVC aggregation and promote PVC substitution. Hydrochar fragments could coat the PVC surface and hinder its hydrolysis. Interactions between LB compositions and PVC improved the fuel properties and combustion behaviors of co-hydrochars derived from bamboo, corncob, wheat stalk, and corn stalk while decreasing the fuel properties and combustion behaviors of co-hydrochar derived from pine (HC-PPE). Except for HC-PPE, the fuel ratio (fixed carbon/volatile matter) of co-hydrochars increased to 0.90-1.18 and their HHVs reached approximately 17.5-32.45 MJ/kg without an increased risk of chlorine corrosion. The combustion of co-hydrochars was easier and more stable due to their higher ignition and burnout temperatures and lower activation energies. These findings provide comprehensive knowledge of the LB feedstocks influence on fuel properties and combustion behaviors of co-hydrochars, which would contribute to the cost-effective use of LB and chlorinated wastes.

7.
Waste Manag ; 156: 198-207, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493663

RESUMEN

Co-hydrothermal carbonization (co-HTC) of lignocellulose biomass (LB) and chlorinated waste can simultaneously remove organic chlorine and inorganics, however, the interaction mechanisms are unclear owing to the variety of operating conditions and complexity of biomass compositions. Pine, bamboo, corncob, corn stalk, and wheat straw were co-hydrothermally carbonized with polyvinyl chloride (PVC) at the mass ratio of 9:1 for 30 min under 260 °C to explore the fundamental interactions. The synergistic index (SI) of dechlorination efficiency ranged from -20.3 % to 19.9 %, indicating the interaction depended on the content and composition of cellulose, hemicellulose, and lignin in the LB feedstocks. Hydroxyl functional groups in cellulose and soluble lignin dehydration intermediates promoted PVC substitution. The LB fragments prevented PVC aggregation while promoted PVC fragmentation, thereby facilitating dechlorination. The polyaromatic hydrochar derived from insoluble lignin and polymeric hydrochar derived from hemicellulose, cellulose, and soluble lignin can coat the surface of molten PVC and act as significant dechlorination inhibitors. All SI of removal efficiency of inorganics (RE) were positive, ranging from 0.74 % to 154 %, with large variations for different inorganics, indicating that inorganics contents in LB influenced RE significantly. A large amount of water-insoluble/acid-soluble inorganics was removed via a metathesis reaction. Soluble inorganics were dissolved in the process water by HCl leaching.


Asunto(s)
Lignina , Cloruro de Polivinilo , Biomasa , Cloro , Celulosa , Agua , Carbono , Temperatura
8.
ACS Omega ; 6(40): 26689-26698, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34661022

RESUMEN

B-γ-CsSnI3 perovskite solar cells (PSCs) are simulated employing diverse electron-transporting layers (ETLs, including TiO2, ZnO, SnO2, GaN, C60, and PCBM), and a comparative study has been made. Both regular and inverted planar structures are simulated. Effects of the thickness of absorbers and ETLs, doping of ETLs, and interface trap states on the photovoltaic performance are studied to optimize the device structures. The regular structures have larger short-circuit current density (J sc) than the inverted structures, but the inverted structures have larger fill factor (FF). All of the simulated optimal PSCs have similar open-circuit voltages (V oc) of ∼0.96 V. The PSCs with TiO2 ETLs have the best photovoltaic performance, and the optimum structure exhibits the highest efficiency of 20.2% with a V oc of 0.97 V, J sc of 29.67 mA/cm2, and FF of 0.70. The optimal PSCs with ZnO, GaN, C60, and PCBM ETLs exhibit efficiencies of 17.88, 18.09, 16.71, and 16.59%, respectively. The optimal PSC with SnO2 ETL exhibits the lowest efficiency of 15.5% in all of the simulated PSCs due to its cliff-like band offset at the SnO2/CsSnI3 interface. Furthermore, the increase of interface trap density and capture cross section is found to reduce the photovoltaic performance of PSCs. This work contributes to designing and fabricating CsSnI3 PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA