Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Microorganisms ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838472

RESUMEN

The ability of bacteriophage (phage), abundant within the gastrointestinal microbiome, to regulate bacterial populations within the same micro-environment offers prophylactic and therapeutic opportunities. Bacteria and phage have both been shown to interact intimately with mucin, and these interactions invariably effect the outcomes of phage predation within the intestine. To better understand the influence of the gastrointestinal micro-environment on phage predation, we employed enclosed, in vitro systems to investigate the roles of mucin concentration and agitation as a function of phage type and number on bacterial killing. Using two lytic coliphage, T4 and PhiX174, bacterial viability was quantified following exposure to phages at different multiplicities of infection (MOI) within increasing, physiological levels of mucin (0-4%) with and without agitation. Comparison of bacterial viability outcomes demonstrated that at low MOI, agitation in combination with higher mucin concentration (>2%) inhibited phage predation by both phages. However, when MOI was increased, PhiX predation was recovered regardless of mucin concentration or agitation. In contrast, only constant agitation of samples containing a high MOI of T4 demonstrated phage predation; briefly agitated samples remained hindered. Our results demonstrate that each phage-bacteria pairing is uniquely influenced by environmental factors, and these should be considered when determining the potential efficacy of phage predation under homeostatic or therapeutic circumstances.

2.
Proc Biol Sci ; 279(1735): 1896-903, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22171085

RESUMEN

The evolution of host resistance to parasites, shaped by associated fitness costs, is crucial for epidemiology and maintenance of genetic diversity. Selection imposed by multiple parasites could be a particularly strong constraint, as hosts either accumulate costs of multiple specific resistances or evolve a more costly general resistance mechanism. We used experimental evolution to test how parasite heterogeneity influences the evolution of host resistance. We show that bacterial host populations evolved specific resistance to local bacteriophage parasites, regardless of whether they were in single or multiple-phage environments, and that hosts evolving with multiple phages were no more resistant to novel phages than those evolving with single phages. However, hosts from multiple-phage environments paid a higher cost, in terms of population growth in the absence of phage, for their evolved specific resistances than those from single-phage environments. Given that in nature host populations face selection pressures from multiple parasite strains and species, our results suggest that costs may be even more critical in shaping the evolution of resistance than previously thought. Furthermore, our results highlight that a better understanding of resistance costs under combined control strategies could lead to a more 'evolution-resistant' treatment of disease.


Asunto(s)
Bacteriófagos/fisiología , Evolución Biológica , Interacciones Huésped-Parásitos , Pseudomonas syringae/virología , Modelos Biológicos , Selección Genética
3.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-31316751

RESUMEN

Bacteriophages are the most prominent members of the gut microbiome, outnumbering their bacterial hosts by a factor of 10. Phages are bacteria-specific viruses that are gaining attention as highly influential regulators of the gut bacterial community. Dysregulation of the gut bacterial community contributes to dysbiosis, a microbiome disorder characterized by compositional and functional changes that contribute to disease. A role for phages in gut microbiome dysbiosis is emerging with evidence that the gut phage community is altered in dysbiosis-associated disorders such as colorectal cancer and inflammatory bowel disease. Several recent studies have linked successful fecal microbiota transplantation to uptake of the donor's gut phage community, offering some insight into why some recipients respond to treatment whereas others do not. Here, we review the literature supporting a role for phages in mediating the gut bacterial community, giving special attention to Western diet dysbiosis as a case study to demonstrate a theoretical phage-based mechanism for the establishment and maintenance of dysbiosis.


Asunto(s)
Bacteriófagos , Disbiosis , Microbioma Gastrointestinal , Microbiota , Humanos , Modelos Teóricos
4.
Artículo en Inglés | MEDLINE | ID: mdl-31750259

RESUMEN

Fecal microbiota transplantation (FMT) is an effective tool for treating Clostridium difficile infection in the setting of dysbiosis of the intestinal microbiome. FMT for other forms of human disorders linked to dysbiosis have been less effective. The fecal microbiota contains a high density of virus-like particles (VLP), up to 90% of which are bacteriophages, thought to have a role in regulating gut bacterial populations. We hypothesized that transplantation of the phage-containing fecal VLP fraction may reduce bacterial density in the dysbiotic setting of small intestinal bacterial overgrowth (SIBO). In an experiment using fecal transplantation, we compared the effect of the fecal VLP fraction (bacteria removed) against "Whole" FMT (bacteria intact) on the ileal microbiome. Recipients were either treated with a 30-day high-fat diet (HFD) as a model of dysbiosis to induce SIBO or were on a standard diet (SD). We observed that transplantation of fecal VLPs from donors on a HFD was sufficient to alter the ileal microbiota, but the effect was dependent on diet of the recipient. In recipients on a HFD, ileal bacterial density was reduced. In recipients on a SD, the ileal microbiome transitioned toward the composition associated with a HFD. In both recipient groups, transplantation of fecal VLP fraction alone produced the same outcome as whole FMT. Neither treatment altered expression of antimicrobial peptides. These findings demonstrated a potential role of VLPs, likely phages, for modifying the gut microbiome during dysbiosis.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Disbiosis/terapia , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Intestino Delgado/microbiología , Animales , Carga Bacteriana , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Clostridioides difficile , Modelos Animales de Enfermedad , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/terapia , Trasplante de Microbiota Fecal/métodos , Metagenómica/métodos , Ratones , ARN Ribosómico 16S , Resultado del Tratamiento
5.
World J Gastrointest Pharmacol Ther ; 8(3): 162-173, 2017 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-28828194

RESUMEN

The practice of phage therapy, which uses bacterial viruses (phages) to treat bacterial infections, has been around for almost a century. The universal decline in the effectiveness of antibiotics has generated renewed interest in revisiting this practice. Conventionally, phage therapy relies on the use of naturally-occurring phages to infect and lyse bacteria at the site of infection. Biotechnological advances have further expanded the repertoire of potential phage therapeutics to include novel strategies using bioengineered phages and purified phage lytic proteins. Current research on the use of phages and their lytic proteins, specifically against multidrug-resistant bacterial infections, suggests phage therapy has the potential to be used as either an alternative or a supplement to antibiotic treatments. Antibacterial therapies, whether phage- or antibiotic-based, each have relative advantages and disadvantages; accordingly, many considerations must be taken into account when designing novel therapeutic approaches for preventing and treating bacterial infections. Although much is still unknown about the interactions between phage, bacteria, and human host, the time to take phage therapy seriously seems to be rapidly approaching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA