RESUMEN
Solid-state batteries (SSBs) have the potential to revolutionize the current energy storage sector. A significant portion of the current development of electric vehicles and the electrification of various appliances relies on Lithium (Li)-ion batteries. However, future energy demands will require the development of stronger and more reliable batteries. This report presents a novel solid state electrolyte (SSE) composed of a self-healing composite solid polymer electrolyte (CSPE) matrix and aluminum-doped (Li0.33La0.56)1.005Ti0.99Al0.01O3 (A-LLTO) nanofillers. The CSPE contains Jeffamine ED-2003 monomer, Benzene-1,3,5-tricarbaldehyde (BTC) crosslinker dissolved in a 1:1 ratio of Dimethylformamide (DMF) to LiPF6, and a certain amount (x) of A-LLTO nanofillers (x = 5, 7.5, 10, 12.5%). A CSPE containing x-amount of A-LLTO fillers (referred to as CAL-x%) demonstrates excellent ion-conducting properties and stable battery performance. The CAL-10% demonstrates 1.1 × 10-3 S cm-1 of ionic conductivity at room temperature (RT). A-LLTO nanofillers dispersed uniformly within the polymer matrix form a percolation network, which is believed to improve ionic conductivity and the diffusion of Li+ ions. The CR-2032 cell, consisting of LiFePO4 (LFP)âCAL-10%âLi, at RT offers an initial discharge capacity of ≈165 mAh g-1 at 0.1C rate for 120 cycles with 98.85% coulombic efficiency (C.E.).
RESUMEN
Manipulations of singlet oxygen (1 O2 ) generations by the integration of both aggregation-induced emission luminogen (AIEgen) photosensitizer and photochromic moieties have diversified features in photodynamic therapy applications. Through Förster resonance energy transfer (FRET) pathway to induce red PL emissions (at 595 nm) for 1 O2 productions, [1]rotaxane containing photosensitive tetraphenylethylene (TPE) donor and photochromic diarylethene (DAE) acceptor is introduced to achieve dual and sequential locked/unlocked photoswitching effects by pH-controlled shuttling of its contracted/extended forms. Interestingly, the UV-enabled DAE ring closure speeds follow the reversed trend of DAE self-constraint degree as: contracted < extended < noninterlocked forms in [1]rotaxane analogues, thus FRET processes can be adjusted in contracted/extended forms of [1]rotaxane upon UV irradiations. Accordingly, the contracted form of [1]rotaxane is FRET-OFF locked and inert to UV exposure due to the larger bending conformation of DAE parallel (p-)conformer, compared with its extended and noninterlocked analogues possessing switchable FRET-OFF/ON behaviors activated by dual and sequential pH- and photoswitching. Owing to the advantages of 1 O2 productions tuned by multistimuli inputs (pH, UV, and blue light), an useful logic circuit for toxicity outputs of the surface modified [1]rotaxane nanoparticles (NPs) has been demonstrated to offer promising 1 O2 productions and managements based on mechanically interlocked molecules for future bioapplications.
RESUMEN
A novel aggregation-induced emission (AIE) structure containing a tetraphenylethene (TPE) unit covalently linked with a merocyanine (MC) unit was synthesized and investigated in semi-aqueous solutions with 90% water fraction. The open-form structure of red-emissive MC unit combined with TPE unit was utilized as a bi-fluorophoric sensor to detect lead(II) ion, which could be transformed from the close-form structure of non-emissive SP unit upon UV exposure. Moreover, the TPE unit as an energy donor with the blue-green photoluminescence (PL) emission at 480 nm was combined with the MC unit as an energy acceptor with the red PL emission at 635 nm. Due to the Förster resonance energy transfer (FRET) processes, the bi-fluorophoric sensor produced more efficient ratiometric PL behavior to induce a stronger red PL emission than that of the mono-fluorophoric MC unit. Hence, the PL sensor responses of the AIE bi-fluorophoric structure toward lead(II) ion could be further amplified via the FRET-OFF processes to turn off red PL emission of the coordinated MC acceptor and to recover blue-green PL emission of the TPE donor. Accordingly, the best LOD value for the AIE sensor detection toward Pb2+ was 0.27 µM. The highest red MC emission with the optimum FRET process of AIE sensor could be utilized in cell viability tests to prove the non-toxic and remarkable bio-marker of AIE sensor to detect lead(II) ion in live cells. The developed FRET-OFF processes with ratiometric PL behavior of the bi-fluorophoric AIE sensor can be utilized for future chemo- and bio-sensor applications.
RESUMEN
A compact multi-functional diagnostic tool has been installed for commissioning beamlines at the Taiwan Light Source. For a photon beam, the instrument can measure the photon flux, energy resolution and beam size, consecutively with a photodiode or gold mesh, a windowless gas cell and a movable fluorescence screen viewport. Two gratings with ruling densities of 350 and 1000 linesâ mm(-1) and dispersing photons of energies from 80 to 1200â eV were calibrated with a photon flux of 10(11)â photonâ s(-1) at slit openings of 50â µm × 50â µm; a maximum resolving power of greater than 10000 was certified with an absorption spectra of gaseous samples. Pressure differences over four orders of magnitude were achieved between the ion chamber and the flux measurement chamber with a single capillary differential pumping stage. A sequence of beam profiles was measured by moving continuously in the vicinity of the nominal focal positions. This tool is useful in commissioning or trouble-shooting at most beamlines in a synchrotron facility.
RESUMEN
This report presents the design and synthesis of quinazolinone-based derivatives as promising SARS-CoV-2 3CL protease inhibitors. Two novel series, namely, febrifugine analogues 4a-i and quinazolinone conjugated benzimidazoles 9a-c, were successfully synthesized starting from isatoic anhydride. The synthesized quinazolinone derivatives were evaluated for their cytotoxicity against cancer cell lines and SARS-CoV-2 3CL inhibitory activity. The results showed that the synthesized compounds did not have significant toxicity for the non-cancer HEK293 cell line and MCF-7, MDA-MB-231, HEPG2 and HEPG2.2.15 cancer cell lines. Notably, compound 9b exhibited anti-3CL enzymatic activity in a dose-dependent manner, with the calculated IC50 value of 10.73 ± 1.17 µM. Docking results highlighted the interaction between 9b and 3CL protease through hydrogen bonding with key amino acids, including His41, Met49, Cys145, Met165, Arg188, His164, and Glu166, at the active site of the protease. Pharmacokinetic studies and ADME analyses provide valuable insights into the potential of compound 9b as a drug candidate. These findings support the new scaffold as a candidate for 3CLpro inhibition and advanced anti-coronavirus drug research.
RESUMEN
The first tunable nano-bending structures of [1]rotaxane containing a single-fluorophoric N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) moiety (i.e., [1]RA) are developed as a loosened lasso structure to feature the bright white-light emission [CIE (0.27, 0.33), Φ = 21.2%] in THF solution, where bi-stable states of bending and twisted structures of DPAC unit in [1]RA produce cyan and orange emissions at 480 and 600 nm, respectively. With acid/base controls, tunable loosened/tightened nano-loops of corresponding [1]rotaxanes (i.e., [1]RA/[1]RB) can be achieved via the shuttling of macrocycles reversibly, and thus to adjust their respective white-light/cyan emissions, where the cyan emission of [1]RB is obtained due to the largest conformational constraint of DPAC moiety in its bending form of [1]RB with a tightened lasso structure. Additionally, the non-interlocked analog M-Boc only shows the orange emission, revealing the twisted form of DPAC fluorophore in M-Boc without any conformational constraint. Moreover, the utilization of solvents (with different viscosities and polarities), temperatures, and water fractions could serve as effective tools to adjust the bi-stable vibration-induced emission (VIE) colors of [1]rotaxanes. Finally, tuning ratiometric emission colors of adaptive conformations of DPAC moieties by altering nano-bending structures in [1]rotaxanes and external stimuli can be further developed as intelligent temperature and viscosity sensor materials.
RESUMEN
Simple pyridyl-salicylimine derivatives (F1, F2 and F3) are reported for the first time as fluorescence "turn-on" sensors for distinct detections of Zn(2+), Al(3+) and OH(-) ions in mixed-aqueous media CH3CN/H2O with volume ratios of 6/4 and 3/7 (at pH = 7 and 25 °C) via internal charge transfer (ICT), chelation enhanced fluorescence (CHEF), and deprotonation mechanisms. F1 and F2 show diverse turn-on sensing applications to Zn(2+), Al(3+) and OH(-) ions, but F3 exhibited the fluorescence turn-on sensing to Al(3+) and OH(-) ions in CH3CN/H2O (6/4; vol/vol). F1+Zn(2+) and F2+Zn(2+) complexes revealed the reversibilities and ratiometric displacements of Zn(2+) with ethylene diamine tetra acetic acid (EDTA) and Al(3+) ions, respectively, in CH3CN/H2O (6/4; vol/vol). On the other hand, F1, F2 and F3 in CH3CN/H2O (3/7; vol/vol) showed sensitivities only to Al(3+) ions but negligible selectivities to OH(-) ions. Stoichiometry of all sensor complexes were calculated as 1 : 1 by job's plots based on UV/Vis and PL titrations. The complex formation and binding sites of all sensor materials were well characterized by (1)H, (13)C NMR, and mass (FAB) spectral analysis. Detection limits were calculated from standard deviations and linear fitting calculations. The association constant (log K(a)) values of sensor complexes were evaluated from the fluorescence binding isotherms. The fluorescence decay constant (τ) values were estimated from time resolved fluorescence studies. Time, temperature, pH and solvent concentration effects towards sensor responses were fully investigated in this report.
Asunto(s)
Aluminio/análisis , Hidróxidos/análisis , Iminas/química , Piridinas/química , Ácido Salicílico/química , Zinc/análisis , Acetonitrilos/química , Fluorescencia , Colorantes Fluorescentes/química , Iones/análisis , Agua/químicaRESUMEN
Intrinsically stretchable conductive self-healable organogels containing poly(lipoic acid), Al3+ ion, tannic acid, and reduced graphene oxide are produced in this report. These noncovalent networks interlocked through physical (hydrogen and coordination) bonds offered high stretchabilities and mechanical strengths as well as fast self-healing behaviors. The optimum organogel-based sensor showed outstanding pressure sensitivities (0.94 kPa-1 up to 10 and 1.07 kPa-1 for 10-50 kPa) and high strain responses (corresponding gauge factors of 1.1 and 0.4 for 0-50 and 50-100% stretching ratios). This organogel also revealed high stabilities at ambient atmosphere due to the presence of binary solvents of dimethyl sulfoxide and glycerol. Additionally, this stretchable thermistor displayed remarkable two-stage sensitivities of -2.6 and -0.4%/°C ranging over 0-30 and 30-80 °C, respectively. Besides, the signal variations of water droplet addition and removal with different temperatures were recorded by the organogel sensor to elucidate the practical applicabilities as a temperature sensor. Moreover, the organogel was utilized to demonstrate humidity sensing, where individual sensitivities of 0.89 and 0.55 were obtained in the respective relative humidity ranges of 10-30 and 40-90%. In the meanwhile, the sensor device illustrated distinct humidity signals during respiration monitoring of nose and mouth breathing detection. Accordingly, these quad-functional sensor applications in strain, pressure, temperature, and humidity detection enable this gel to act as a promising material for future multifunctional flexible electronics.
RESUMEN
The self-trapping nano-loop structures of [1]rotaxanes exhibited multiple Förster resonance energy transfer (FRET) patterns via dual and sequential locking/unlocking of pH-gated and UV exposure processes. As a tightened and constrained nano-loop in the acidic condition, dithienylethene (DTE) unit was locked in the highly bending open form to forbid ring closure upon UV irradiation.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Rotaxanos , Rotaxanos/química , Rayos UltravioletaRESUMEN
Bistable [c2] daisy chain rotaxanes with respective extended and contracted forms of [c2]A and [c2]B containing a blue-emissive anthracene (AN) donor and orange-emissive indandione-carbazole (IC) acceptor were successfully synthesized via click reaction. Tunable-emission bistable [c2] daisy chain rotaxanes with fluorescence changes from blue to orange, including bright-white-light emissions, could be modulated by the aggregation-induced emission (AIE) characteristics and Förster resonance energy transfer (FRET) processes through altering water fractions and shuttling processes (i.e., acid/base controls). Accordingly, as a result of excellent fine-tuning AIE (at 60% water content of H2O/THF) and FRET (with a compatible energy transfer of EFRET = 33.2%) behaviors after the shuttling process (by adding base), the brightest white-light emission at CIE (0.31, 0.37) with a quantum yield of Φ = 15.64% was obtained in contracted [c2]B with good control of molecular shuttling to possess higher photoluminescence (PL) quantum yields and better energy transfer efficiencies (i.e., the manipulation of reduced PET and enhanced FRET processes) due to their intramolecular aggregations of blue AN donors and orange IC acceptors with a proper water content of 60% H2O. Furthermore, dynamic light-scattering (DLS) and time-resolved photoluminescence (TRPL) measurements, along with theoretical calculations, were utilized to investigate and confirm AIE and FRET phenomena of bistable [c2] daisy chain rotaxanes. Especially, both bistable [c2] daisy chain rotaxanes [c2]A and [c2]B and noninterlocked monomer M could be exploited for the applications of ratiometric fluorescence temperature sensing due to the temperature effects on the AIE and FRET features. Based on these desirable bistable [c2] daisy chain rotaxane structures, this work provides a potential strategy for the future applications of tunable multicolor emission and ratiometric fluorescence temperature-sensing materials.
RESUMEN
The severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2-Mpro) plays an essential role in viral replication, transcription, maturation, and entry into host cells. Furthermore, its cleavage specificity for viruses, but not humans, makes it a promising drug target for the treatment of coronavirus disease 2019 (COVID-19). In this study, a fragment-based strategy including potential antiviral quinazolinone moiety and glutamine- or glutamate-derived peptidomimetic backbone and positioned nitro functional groups was used to synthesize putative Mpro inhibitors. Two compounds, G1 and G4, exhibited anti-Mpro enzymatic activity in a dose-dependent manner, with the calculated IC50 values of 22.47 ± 8.93 µM and 24.04 ± 0.67 µM, respectively. The bio-layer interferometer measured real-time binding. The dissociation kinetics of G1/Mpro and G4/Mpro also showed similar equilibrium dissociation constants (KD) of 2.60 × 10-5 M and 2.55 × 10-5 M, respectively, but exhibited distinct association/dissociation curves. Molecular docking of the two compounds revealed a similar binding cavity to the well-known Mpro inhibitor GC376, supporting a structure-function relationship. These findings may open a new avenue for developing new scaffolds for Mpro inhibition and advance anti-coronavirus drug research.
Asunto(s)
COVID-19 , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Ácido GlutámicoRESUMEN
Three novel electron donor-acceptor conjugated polymers (P1-P3) bearing various imidazole pendants have been synthesized. Their excellent photophysical and electrochemical properties make them suitable transduction materials for chemosensing applications. Indeed, polymers P1-P3 have been found to show remarkable sensing capabilities towards H(+) and Fe(2+) in semi-aqueous solutions. Upon titration with H(+), polymers P1 and P2 showed hypsochromic shifts of their absorptions and photoluminescence (PL) maxima with enhanced fluorescence intensities. However, P3 showed diminished absorption and fluorescence intensities under similar conditions due to static quenching. The anomalous behavior of P3 compared with P1 and P2 has been clarified in terms of electronic distributions through computational analysis. Furthermore, P3 (K(SV) = 1.03×10(7)) showed a superior sensing ability towards Fe(2+) compared with P1 (K(SV) = 2.01×10(6)) and P2 (K(SV) = 4.12×10(6)) due to its improved molecular wire effect. Correspondingly, the fluorescence lifetime of P3 was greatly decreased (almost 11-fold) compared to those of polymers P1 (4.6-fold) and P2 (6.2-fold) in the presence of Fe(2+). By means of a fluorescence on-off-on approach, chemosensing reversibilities in protonation-deprotonation and metallation-demetallation have been achieved by employing triethylamine (TEA) and the disodium salt of ethylenediaminetetraacetic acid (Na(2)-EDTA)/phenanthroline, respectively, as suitable counter ligands. (1)Hâ NMR titrations have revealed the unique behavior of P3 compared with P1 and P2. To the best of our knowledge, there have been no previous reports of Fe(2+) sensors based on single imidazole receptors conjugated to a main-chain polymer showing such a diverse sensitivity pattern depending on their attached substituents.
Asunto(s)
Colorantes Fluorescentes/química , Imidazoles/química , Hierro/química , Polímeros/química , Polímeros/síntesis química , Ligandos , Espectroscopía de Resonancia Magnética , Estructura MolecularRESUMEN
Two random (Zn(II)-based P1-P2) and two alternating (Ru(II)-based P3-P4) metallo-copolymers containing bis-terpyridyl ligands with various central donor (i.e., fluorene or carbazole) and acceptor (i.e., benzothiadiazole) moieties were synthesized. The effects of electron donor-acceptor interactions with metal (Zn(II) and Ru(II)) ions on their thermal, optical, and electrochemical properties were investigated. Because of the strong ICT transitions between donor and acceptor ligands in both Zn(II)- and Ru(II)-based metallo-coplymers and MLCT transitions in Ru(II)-based metallo-coplymers, the absorption spectra covered a broad range of 260-750 nm with the band gaps of 1.57-1.77 eV. In addition, the introduction of Ru(II)-based metallo-coplymer P4 mixed with PC(60)BM as an active layer of the BHJ solar cell device exhibited the highest PCE value up to 0.90%.
Asunto(s)
Fotoquímica/instrumentación , Polímeros/síntesis química , Piridinas/química , Rutenio/química , Técnicas de Química Sintética , Estructura Molecular , Polímeros/químicaRESUMEN
Materials capable of displaying strong ratiometric fluorescence with Förster resonance energy transfer (FRET) processes have attracted much research interest because of various chemosensor and biomedical applications. This review highlights several popular strategies in designing FRET-OFF/ON mechanisms of ratiometric fluorescence systems. In particular, the developments of organic and polymeric FRET materials featuring aggregation-induced emission-based luminogens (AIEgens), supramolecular assemblies, photochromic molecular switches and surfactant-induced AIE/FRET mechanisms are presented. AIEgens have been frequently employed as FRET donor and/or acceptor fluorophores to obtain enhanced ratiometric fluorescences in solution and solid states. Since AIE effects and FRET processes rely on controllable distances between fluorophores, many interesting fluorescent properties can be designed by regulating aggregation states in polymers and supramolecular systems. Photo-switchable fluorophores, such as spiropyran and diarylethene, provide drastic changes in fluorescence spectra upon photo-induced isomerizations, leading to photo-switching mechanisms to activate/deactivate FRET processes. Supramolecular assemblies offer versatile platforms to regulate responsive FRET processes effectively. In rotaxane structures, the donor-acceptor distance and FRET efficiency can be tuned by acid/base-controlled shuttling of the macrocycle component. The tunable supramolecular interactions are strongly influenced by external factors (such as pH values, temperatures, analytes, surfactants, UV-visible lights, etc.), which induce the assembly and disassembly of host-guest systems and thus their FRET-ON/FRET-OFF behavior. In addition, the changes in donor or acceptor fluorescence profiles upon detections of analytes can also sufficiently alter the FRET behavior and result in different ratiometric fluorescence outputs. The strategies and examples provided in this review offer the insights and toolkits for future FRET-based material developments.
Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Polímeros/químicaRESUMEN
Numerous efforts have been attempted to mimic human tongue since years. However, they still have limitations because of damages, temperature effects, detection ranges etc. Herein, a self-healable hydrogel-based artificial bioelectronic tongue (E-tongue) containing mucin as a secreted protein, sodium chloride as an ion transporting electrolyte, and chitosan/poly(acrylamide-co-acrylic acid) as the main 3D structure holding hydrogel network is synthesized. This E-tongue is introduced to mimic astringent and bitter mouth feel based on cyclic voltammetry (CV) measurements subjected to target substances, which permits astringent tannic acid (TA) and bitter quinine sulfate (QS) to be detected over wide corresponding ranges of 29.3 mM-0.59 µM and 63.8 mM-6.38 µM with remarkable respective sensitivities of 0.2 and 0.12 wt%-1. Besides, the taste selectivity of this E-tongue is performed in the presence of various mixed-taste chemicals to show its high selective behavior toward bitter and astringent chemicals. The electrical self-healability is shown via CV responses to illustrate electrical recovery within a short time span. In addition, cytotoxicity tests using HeLa cells are performed, where a clear viability of ≥95% verified its biocompatibility. The anti-freezing sensing of E-tongue tastes at -5 °C also makes this work to be useful at sub-zero environments. Real time degrees of tastes are detected using beverages and fruits to confirm future potential applications in food taste detections and humanoid robots.
Asunto(s)
Técnicas Biosensibles , Gusto , Astringentes , Células HeLa , Humanos , Hidrogeles , LenguaRESUMEN
In this study, we synthesized three analogous bent-core molecules, a hydrogen-bonded complex and a covalent-bonded compound with branched siloxane units (H-SiO and C-SiO, respectively) and a hydrogen-bonded complex with an alkyl unit (H-Alk), and investigated the effects of the hydrogen bonding and branched siloxane terminal units on their mesomorphic properties. The covalent-bonded compound C-SiO and the hydrogen-bonded complex H-Alk exhibited typical SmCP phases; in contrast, the hydrogen-bonded complex H-SiO exhibited a series of general tilt smectic (SmCG) phases with highly ordered layer structures (i.e., SmCÌG(2)P(F)-USmCG(2)P(A)-SmCG(2)P(F)-SmCGP(F) upon cooling). During the SmCG-type phase transition process, a 2D-modulated ribbon structure transferred into highly ordered layers via undulated layers, as the hydrogen-bonding strength increased with reduced temperatures. As the SmCG domains were aligned under dc electric fields, a gradual decrease in the leaning angle from ca. 60° to 50° (while the tilt angle kept at ca. 31°) could be determined by in situ wide-angle X-ray scattering (WAXS). Combined with Fourier transform infrared and Raman spectroscopic data, our results suggest that the change in the leaning angle was governed by the competition of the hydrogen bonds and microsegregation of siloxane units within the bilayer structure of the hydrogen-bonded complex H-SiO. In addition, the ferroelectric-(antiferroelectric)-ferroelectric transitions proven by the switching current responses in the SmCG-type phases of H-SiO reveal that the polar switching occurred through collective rotations around the long axis of H-SiO. Therefore, novel SmCG phases with a series of highly ordered 2D-structures were induced by the effects of the hydrogen bonding and branched terminal siloxane unit in the bent-core hydrogen-bonded LC complex H-SiO.
RESUMEN
The novel multistimuli-responsive monofluorophoric supramolecular polymer Poly(TPE-DBC)/FL-DBA and pseudo[3]rotaxane TPE-DBC/FL-DBA consisted of the closed form of nonemissive fluorescein guest FL-DBA along with TPE-based main-chain macrocyclic polymer Poly(TPE-DBC) and TPE-functionalized macrocycle TPE-DBC hosts, respectively. By the combination of various external stimuli, these fluorescent supramolecular host-guest systems could reveal interesting photoluminescence (PL) properties in DMF/H2O (1:1, v/v) solutions, including bifluorophoric host-guest systems after the complexation of Al3+ ion, i.e., TPE-DBC/FL-DBA-Al3+ and Poly(TPE-DBC)/FL-DBA-Al3+ with their corresponding open form of fluorescein guest FL-DBA-Al3+. Importantly, the Förster resonance energy transfer (FRET) processes occurred in both bifluorophoric host-guest systems between blue-emissive TPE donors (λem = 470 nm) and green-emissive fluorescein acceptors (λem = 527 nm) after aluminum detection, which were further verified by time-resolved photoluminescence (TRPL) measurements to acquire their FRET efficiencies of 40.4 and 31.1%, respectively. Both supramolecular host-guest systems exhibited stronger green fluorescein emissions as well as appealing ratiometric PL behaviors within the desirable donor-acceptor distances of FRET processes in comparison with their detached analogous mixtures. Regarding the pH effects, the optimum green fluorescein emissions with effective FRET processes of all compounds and host-guest systems were sustained in the range pH = 7-10. Interestingly, both host-guest systems TPE-DBC/FL-DBA and Poly(TPE-DBC)/FL-DBA possessed high sensitivities and selectivities toward aluminum ion to display their strong green emissions via FRET-ON behaviors due to the chelation-induced ring opening of spirolactam moieties to become green-emissive guest acceptor FL-DBA-Al3+, which offered excellent limit of detection (LOD) values of 50.61 and 38.59 nM, respectively, to be further applied for the fabrication of facile test strips toward aluminum detection. Accordingly, the inventive ratiometric PL and FRET sensor approaches of supramolecular host-guest systems toward aluminum ion with prominent sensitivities and selectivities were well-established in this study.
RESUMEN
A supramolecular [2]pseudo-rotaxane containing a naphthalimide-based pillararene host and a spiropyran-based imidazole guest was synthesized and investigated in a semiaqueous solution with 90% water fraction. Upon UV exposure, the close-form structure of nonemissive spiropyran guest could be transformed into the open-form structure of red-emissive merocyanine guest reversibly, which was utilized as a monofluorophoric sensor to detect copper(II) and cyanide ions. Moreover, the naphthalimide host as an energy donor with green photoluminescence (PL) emission at 505 nm was complexed with the merocyanine guest as an energy acceptor with red PL emission at 650 nm in 1:1 molar ratio to generate a [2]pseudo-rotaxane polymer, which was further verified by the diffusion coefficients of DOSY nuclear magnetic resonance (NMR) measurements. Due to the Förster resonance energy transfer (FRET) processes, the bifluorophoric [2]pseudo-rotaxane produced more efficient ratiometric PL behavior to induce a stronger red PL emission than that of the monofluorophoric guest; therefore, the PL sensor responses of the supramolecular [2]pseudo-rotaxane toward copper(II) and cyanide ions could be further amplified via the FRET-OFF processes to turn off red PL emission of the reacted merocyanine acceptor and to recover green PL emission of the naphthalimide donor. Accordingly, the best and prominent values of the limit of detection (LOD) for the host-guest detections toward Cu2+ and CN- were 0.53 and 1.34 µM, respectively. The highest red MC emission with the optimum FRET processes of [2]pseudo-rotaxane was maintained around room temperature (20-40 °C) in wide pH conditions (pH = 3-13), which can be utilized in the cell viability tests to prove the nontoxic and remarkable biomarker of [2]pseudo-rotaxane to detect Cu2+ and CN- in living cells. The developed FRET-OFF processes with ratiometric PL behavior of the bifluorophoric supramolecular [2]pseudo-rotaxane polymer will open a new avenue to the future applications of chemo- and biosensors.
RESUMEN
A series of novel photo-switchable [2]rotaxanes (i.e., Rot-A-SP and Rot-B-SP before and after shuttling controlled by acid-base, respectively) containing one spiropyran (SP) unit (as a photochromic stopper) on the axle and two tetraphenylethylene (TPE) units on the macrocycle were synthesized via click reaction. Upon UV/visible light exposure, both mono-fluorophoric rotaxanes Rot-A-SP and Rot-B-SP with the closed form (i.e., non-emissive SP unit) could be transformed into the open form (i.e., red-emissive merocyanine (MC) unit) to acquire their respective bi-fluorophoric Rot-A-MC and Rot-B-MC reversibly. The aggregation-induced emission (AIE) properties of bi-fluorophoric TPE combined with MC AIEgens of these designed rotaxanes and mixtures in semi-aqueous solutions induced interesting ratiometric photoluminescence (PL) and Förster resonance energy transfer (FRET) behaviors, which were further investigated and verified by dynamic light scattering (DLS), X-ray diffraction (XRD), and time-resolved photoluminescence (TRPL) measurements along with theoretical studies. Accordingly, in contrast to the model axle (Axle-MC) and the analogous mixture (Mixture-MC, containing the axle and macrocycle components in a 1:1 molar ratio), more efficient FRET behaviors and stronger red PL emissions were obtained from dual-AIEgens between a blue-emissive TPE donor (PL emission at 468 nm) and a red-emissive MC acceptor (PL emission at 668 nm) in both novel photo-switchable [2]rotaxanes Rot-A-MC and Rot-B-MC under various external modulations, including water content, UV/Vis irradiation, pH value, and temperature. Furthermore, the reversible fluorescent photo-patterning applications of Rot-A-SP in a powder form and a solid film with excellent photochromic and fluorescent behaviors are first investigated in this report.
RESUMEN
A novel amphiphilic aggregation-induced emission (AIE) copolymer, that is, poly(NIPAM-co-TPE-SP), consisting of N-isopropylacrylamide (NIPAM) as a hydrophilic unit and a tetraphenylethylene-spiropyran monomer (TPE-SP) as a bifluorophoric unit is reported. Upon UV exposure, the close form of non-emissive spiropyran (SP) in poly(NIPAM-co-TPE-SP) can be photo-switched to the open form of emissive merocyanine (MC) in poly(NIPAM-co-TPE-MC) in an aqueous solution, leading to ratiometric fluorescence of AIEgens between green TPE and red MC emissions at 517 and 627 nm, respectively, via Förster resonance energy transfer (FRET). Distinct FRET processes of poly(NIPAM-co-TPE-MC) can be observed under various UV and visible light irradiations, acid-base conditions, thermal treatments, and cyanide ion interactions, which are also confirmed by theoretical studies. The subtle perturbations of environmental factors, such as UV exposure, pH value, temperature, and cyanide ion, can be detected in aqueous media by distinct ratiometric fluorescence changes of the FRET behavior in the amphiphilic poly(NIPAM-co-TPE-MC). Moreover, the first FRET sensor polymer poly(NIPAM-co-TPE-MC) based on dual AIEgens of TPE and MC units is developed to show a very high selectivity and sensitivity with a low detection limit (LOD = 0.26 µM) toward the cyanide ion in water, which only contain an approximately 1% molar ratio of the bifluorophoric content and can be utilized in cellular bioimaging applications for cyanide detections.