Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(6): 2272-2288, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421027

RESUMEN

A number of cis-regulatory elements (CREs) conserved during evolution have been found to be responsible for phenotypic novelty and variation. Cucurbit crops such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), and squash (Cucurbita maxima) develop fruits from an inferior ovary and share some similar biological processes during fruit development. Whether conserved regulatory sequences play critical roles in fruit development of cucurbit crops remains to be explored. In six well-studied cucurbit species, we identified 392,438 conserved noncoding sequences (CNSs), including 82,756 that are specific to cucurbits, by comparative genomics. Genome-wide profiling of accessible chromatin regions (ACRs) and gene expression patterns mapped 20,865 to 43,204 ACRs and their potential target genes for two fruit tissues at two key developmental stages in six cucurbits. Integrated analysis of CNSs and ACRs revealed 4,431 syntenic orthologous CNSs, including 1,687 cucurbit-specific CNSs that overlap with ACRs that are present in all six cucurbit crops and that may regulate the expression of 757 adjacent orthologous genes. CRISPR mutations targeting two CNSs present in the 1,687 cucurbit-specific sequences resulted in substantially altered fruit shape and gene expression patterns of adjacent NAC1 (NAM, ATAF1/2, and CUC2) and EXT-like (EXTENSIN-like) genes, validating the regulatory roles of these CNSs in fruit development. These results not only provide a number of target CREs for cucurbit crop improvement, but also provide insight into the roles of CREs in plant biology and during evolution.


Asunto(s)
Secuencia Conservada , Frutas , Regulación de la Expresión Génica de las Plantas , Frutas/genética , Frutas/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Cucurbita/genética , Cucurbita/crecimiento & desarrollo , Citrullus/genética , Citrullus/crecimiento & desarrollo , Citrullus/metabolismo , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética
2.
J Exp Bot ; 74(18): 5783-5804, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37392434

RESUMEN

Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 µmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 µmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.


Asunto(s)
Antocianinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Pigmentación/genética , Regulación de la Expresión Génica de las Plantas
3.
Plant Biotechnol J ; 20(6): 1182-1196, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35247284

RESUMEN

Carnation (Dianthus caryophyllus) is one of the most popular ornamental flowers in the world. Although numerous studies on carnations exist, the underlying mechanisms of flower color, fragrance, and the formation of double flowers remain unknown. Here, we employed an integrated multi-omics approach to elucidate the genetic and biochemical pathways underlying the most important ornamental features of carnation flowers. First, we assembled a high-quality chromosome-scale genome (636 Mb with contig N50 as 14.67 Mb) of D. caryophyllus, the 'Scarlet Queen'. Next, a series of metabolomic datasets was generated with a variety of instrumentation types from different parts of the flower at multiple stages of development to assess spatial and temporal differences in the accumulation of pigment and volatile compounds. Finally, transcriptomic data were generated to link genomic, biochemical, and morphological patterns to propose a set of pathways by which ornamental traits such as petal coloration, double flowers, and fragrance production are formed. Among them, the transcription factors bHLHs, MYBs, and a WRKY44 homolog are proposed to be important in controlling petal color patterning and genes such as coniferyl alcohol acetyltransferase and eugenol synthase are involved in the synthesis of eugenol. The integrated dataset of genomics, transcriptomics, and metabolomics presented herein provides an important foundation for understanding the underlying pathways of flower development and coloration, which in turn can be used for selective breeding and gene editing for the development of novel carnation cultivars.


Asunto(s)
Dianthus , Dianthus/anatomía & histología , Dianthus/genética , Dianthus/metabolismo , Eugenol , Flores , Fenotipo , Factores de Transcripción/genética
4.
J Transl Med ; 20(1): 108, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246141

RESUMEN

BACKGROUND: Hypertension is highly prevalent and associated with the elevated risks of cardiovascular diseases, dementia, and physical disabilities among adults. Although the correlation between bilirubin and hypertension has been reported, the observation in quinquagenarian population is scarce. We aimed to examine bilirubin-hypertension association in Guankou Ageing Cohort Study. METHODS: Participants ≥ 55 years were recruited and their questionnaires and physical examination data were collected. Kaplan-Meier survival analysis and Cox proportional hazards regression were implemented to assess the hypertension risk. The non-liner dose-response relationships of bilirubin-hypertension were determined by restricted cubic spline (RCS) models. Receiver operating characteristic (ROC) curves and multiple factors analysis (MFA) were performed to evaluate the predictive abilities. RESULTS: 1881 eligible participants (male 43.75%, female 56.25%) with the median age of 61.00 (59.00-66.00) were included. The hazard ratio (HR, 95% CI) of serum total bilirubin (STB) and unconjugated bilirubin (UCB) were 1.03 (1.01-1.05) and 1.05 (1.03-1.07), while conjugated bilirubin (CB) showed a weak protective effect with the HR of 0.96 (0.92-0.99), and the associations remained significant in all models. RCS analyses further indicated the similar bidirectional effects of STB and UCB with the cut-off of 12.17 µmol/L and 8.59 µmol/L, while CB exhibited inverse bidirectional dose-response relationship with a cut-off of 3.47 µmol/L. ROC curves and MFA showed baseline STB combined with age, BMI, and waist circumference could well discriminate the low and high of hypertension risk. CONCLUSIONS: Our findings suggested the higher levels of total and unconjugated bilirubin were hazardous factors of hypertension, while an inverse effect presented when more bilirubin was conjugated.


Asunto(s)
Bilirrubina , Hipertensión , Adulto , Envejecimiento , China/epidemiología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo
5.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293423

RESUMEN

Dianthus spp. is a genus with high economic and ornamental value in the Caryophyllaceae, which include the famous fresh-cut carnation and the traditional Chinese herbal medicine, D. superbus. Despite the Dianthus species being seen everywhere in our daily lives, its genome information and phylogenetic relationships remain elusive. Thus, we performed the assembly and annotation of chloroplast genomes for 12 individuals from seven Dianthus species. On this basis, we carried out the first comprehensive and systematic analysis of the chloroplast genome sequence characteristics and the phylogenetic evolution of Dianthus. The chloroplast genome of 12 Dianthus individuals ranged from 149,192 bp to 149,800 bp, containing 124 to 126 functional genes. Sequence repetition analysis showed the number of simple sequence repeats (SSRs) ranged from 75 to 80, tandem repeats ranged from 23 to 41, and pair-dispersed repeats ranged from 28 to 43. Next, we calculated the synonymous nucleotide substitution rates (Ks) of all 76 protein coding genes to obtain the evolution rate of these coding genes in Dianthus species; rpl22 showed the highest Ks (0.0471), which suggested that it evolved the swiftest. By reconstructing the phylogenetic relationships within Dianthus and other species of Caryophyllales, 16 Dianthus individuals (12 individuals reported in this study and four individuals downloaded from NCBI) were divided into two strongly supported sister clades (Clade A and Clade B). The Clade A contained five species, namely D. caryophyllus, D. barbatus, D. gratianopolitanus, and two cultivars ('HY' and 'WC'). The Clade B included four species, in which D. superbus was a sister branch with D. chinensis, D. longicalyx, and F1 '87M' (the hybrid offspring F1 from D. chinensis and 'HY'). Further, based on sequence divergence analysis and hypervariable region analysis, we selected several regions that had more divergent sequences, to develop DNA markers. Additionally, we found that one DNA marker can be used to differentiate Clade A and Clade B in Dianthus. Taken together, our results provide useful information for our understanding of Dianthus classification and chloroplast genome evolution.


Asunto(s)
Dianthus , Medicamentos Herbarios Chinos , Genoma del Cloroplasto , Humanos , Dianthus/genética , Marcadores Genéticos , Filogenia , Repeticiones de Microsatélite/genética , Nucleótidos
6.
Bull Environ Contam Toxicol ; 109(1): 101-109, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35552770

RESUMEN

The Bayer red mud is the solid waste generated during the production of alumina by the Bayer process. At present, the stock of red mud in China exceeds 1.1 billion tons, covering an area of more than 120,000 mu, and the annual production volume is increasing by 100 million tons. The comprehensive utilization of red mud is still a difficult problem. Therefore, it is of great significance to actively explore new methods for removing sodium from red mud. In this study, the traditional red mud desalination process and the slurry electrolysis process are combined, and the influence of three different leaching agents on the leaching and sodium removal of red mud slurry in the presence of an electric field is explored. In the slurry electrolysis experiment, it was found that the sodium removal rate obtained by different leaching agents was CaO > CaCl2 > HCl. The red mud leached with pure dilute hydrochloric acid has the highest Na removal rate, which is 93.11%. In view of this situation, a pre-slurry-electrolysis cycle process with HCl as leaching agent was proposed. The core of slurry electrolysis is electrolyzing NaCl solution, and HCl only participates in the process as circulating medium. The design of this process reduces cost and increases efficiency.


Asunto(s)
Óxido de Aluminio , Electrólisis , China , Sodio
7.
J Viral Hepat ; 28(10): 1464-1473, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314082

RESUMEN

Yichang is a city in central China in the Hubei Province. This study aimed to estimate the dynamics of the transmissibility of hepatitis C using a mathematical model and predict the transmissibility of hepatitis C in 2030. Data of hepatitis C cases from 13 counties or districts (cities) in Yichang from 2008 to 2016 were collected. A susceptible-infectious-chronic-recovered (SICR) model was developed to fit the data. The transmissibility of hepatitis C at the counties or districts was calculated based on new infections (including infected or chronically infected cases) reported monthly in the city caused by one infectious individual (MNI). The trend of the MNI was fitted and predicted using 11 models, with the coefficient of determination (R2 ) was being used to test the goodness of fit of these models. A total of 3065 cases of hepatitis C were reported in Yichang from 2008 to 2016. The median MNI of Yichang was 0.0768. According to the fitting results and analysis, the trend of transmissibility of hepatitis C in Yichang City conforms with the logarithmic (R2  = 0.918, p < 0.001):MNI = 0.265-0.108 log(t) and exponential (R2  = 0.939, p < 0.001): MNI = 0.344e(-0.278t) models. Hence, the transmission of hepatitis C virus at the county level has a downward trend. In conclusion, the transmissibility of hepatitis C in Yichang has a downward trend. With the current preventive and control measures in place, the spread of hepatitis C can be controlled.


Asunto(s)
Hepacivirus , Hepatitis C , China/epidemiología , Ciudades , Hepatitis C/epidemiología , Humanos , Modelos Teóricos
8.
J Org Chem ; 86(21): 15768-15776, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632765

RESUMEN

We reported herein a copper-catalyzed trifluoromethylarylated cycloaddition of imidazoles and olefins using CF3SO2Cl as the radical source to synthesize highly functionalized tricyclic imidazoles. This procedure exhibits a wide range of substrate scope with 25%-93% isolated yields (36 examples). Mechanistic studies were carried out to support a free trifluoromethyl radical pathway.


Asunto(s)
Alquenos , Cobre , Catálisis , Reacción de Cicloadición , Imidazoles , Estructura Molecular
9.
Water Sci Technol ; 83(8): 1973-1986, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33905366

RESUMEN

Long-term accumulation of cobalt-containing wastewater may also pollute groundwater and cause a large amount of loss of valuable metals. Therefore, the comprehensive utilization of cobalt-containing wastewater must be realized, especially as cobalt itself is a very important strategic resource. This paper proposes a membrane electroconversion method to separate cobalt ions from cobalt-containing wastewater and prepare cobalt hydroxide. In addition, the electrolysis process was optimized, and single-factor experiments such as the initial concentration, cobalt ions, current density, temperature etc., and economic calculations such as current efficiency were explored. The electrolysis product was calcined as the precursor to obtain the oxide Co3O4, and the calcination experiment was also optimized. In this concentration range, more than 90% of cobalt can be recovered within 2 h.


Asunto(s)
Cobalto , Aguas Residuales , Electrólisis , Óxidos
10.
J Exp Bot ; 71(6): 1915-1927, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-31990971

RESUMEN

The double flower is a highly important breeding trait that affects the ornamental value in many flowering plants. To get a better understanding of the genetic mechanism of double flower formation in Dianthus chinensis, we have constructed a high-density genetic map using 140 F2 progenies derived from a cross between a single flower genotype and a double flower genotype. The linkage map was constructed using double-digest restriction site-associated DNA sequencing (ddRAD-seq) with 2353 single nucleotide polymorphisms (SNPs). Quantitative trait locus (QTL) mapping analysis was conducted for 12 horticultural traits, and major QTLs were identified for nine of the 12 traits. Among them, two major QTLs accounted for 20.7% and 78.1% of the total petal number variation, respectively. Bulked segregant RNA-seq (BSR-seq) was performed to search accurately for candidate genes associated with the double flower trait. Integrative analysis of QTL mapping and BSR-seq analysis using the reference genome of Dianthus caryophyllus suggested that an SNP mutation in the miR172 cleavage site of the A-class flower organ identity gene APETALA2 (DcAP2L) is responsible for double flower formation in Dianthus through regulating the expression of DcAG genes.


Asunto(s)
Dianthus , Mapeo Cromosómico , Dianthus/genética , Flores/genética , Ligamiento Genético , Fenotipo , Polimorfismo de Nucleótido Simple
11.
Food Microbiol ; 92: 103590, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950134

RESUMEN

Peroxyacetic acid (PAA) is a commonly used antimicrobial in apple spray bar interventions during post-harvest packing. However, limited information is available about its efficacy against foodborne pathogens on fresh apples under commercial packing conditions. In this study, the practical efficacies of PAA against Listeria monocytogenes on fresh apples during spray bar operation at ambient and elevated temperature were validated in three commercial packing facilities using Enterococcus faecium NRRL B-2354 as a surrogate strain. Apples were inoculated with E. faecium at ~6.5 Log10 CFU/apple and subjected to PAA spray bar interventions per commercial packing line practice. At each temperature and contact time intervention combination, 20-24 inoculated apples were processed together with 72-80 non-inoculated apples. Applying 80 ppm PAA at ambient temperature (17-21 °C) achieved a similar log reduction (P > 0.05) of E. faecium on Granny Smith apples (GSA) in three apple packing facilities, which caused 1.12-1.23 and 1.18-1.32 Log10 CFU/apple reductions of E. faecium on GSA for 30-sec and 60-sec intervention, respectively. Increasing the temperature of the PAA solution to 43-45 °C enhanced its bactericidal effect against E. faecium, causing 1.45, 1.86 and 2.19 Log10 CFU/apple reductions in three packing facilities for a 30-sec contact, and 1.50, 2.24, and 2.29 Log10 CFU/apple reductions for a 60-sec contact, respectively. Similar efficacies (P > 0.05) of PAA at both ambient and elevated temperature were also observed on Fuji apples. Spraying PAA on apples at ambient or elevated temperature reduced the level of E. faecium cross-contamination from inoculated apples to non-inoculated apples but could not eliminate cross-contamination. Data from this study provides valuable technical information and a reference point for the apple industry in controlling L. monocytogenes and verifying the effectiveness of their practices.


Asunto(s)
Enterococcus faecium/efectos de los fármacos , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Listeria monocytogenes/efectos de los fármacos , Ácido Peracético/farmacología , Enterococcus faecium/crecimiento & desarrollo , Microbiología de Alimentos , Conservación de Alimentos/instrumentación , Frutas/microbiología , Listeria monocytogenes/crecimiento & desarrollo , Malus/microbiología
12.
ACS Appl Bio Mater ; 7(9): 6229-6238, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39231394

RESUMEN

To create a healthier indoor environment via sustainable technologies, there is a growing demand for constructing high-performance air filters from natural materials. Addressing this need, we have fabricated high-performance protein air filters with a tailored frame-channel structure via electrospinning. The innovative feature of the protein air filter is generated by adding a small amount of an organic salt, tetrabutylammonium chloride (TBAC), to modulate the denaturation of zein for tuning electrical charge distribution and hydrophilicity of the protein solutions. The results highlight that the optimized filter with 1.0 wt% TBAC exhibits a denser nanofiber assembly on the frame and a sparser arrangement on the channel. Functionally, the filter demonstrates ultralow pressure drop (ca. 9.04 Pa) that is only a third of that observed in unmodified formulation and commercial air filters, while it maintains high filtration efficiency in capturing PM2.5 (99.42% ± 0.30%) and PM0.3 (98.25 ± 0.39%). More importantly, the filter indicates multifunctional perspectives, e.g., high removal efficiency for formaldehyde (HCHO) and PM2.5 under high airflow rates (up to 8 L/min) or after prolonged testing period (120 min). Our design of the frame-channel structure for the protein air filter marks a leap forward in developing biomass-based structural materials.


Asunto(s)
Filtros de Aire , Tamaño de la Partícula , Ensayo de Materiales , Materiales Biocompatibles/química , Proteínas/química , Material Particulado/química , Nanofibras/química
13.
ACS Omega ; 9(26): 28129-28143, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973879

RESUMEN

An efficient and mild protocol for the visible light-induced radical cascade difluoromethylation/cyclization of imidazoles with unactivated alkenes using easily accessible and bench-stable difluoromethyltriphenylphosphonium bromide as the precursor of the -CF2H group has been developed to afford CF2H-substituted polycyclic imidazoles in moderate to good yields. This strategy, along with the construction of Csp3-CF2H/C-C bonds, is distinguished by mild conditions, no requirement of additives, simple operation, and wide substrate scope. In addition, the mechanistic experiments have indicated that the difluoromethyl radical pathway is essential for the methodology.

14.
Biomed Pharmacother ; 154: 113586, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007277

RESUMEN

OBJECTIVE: Oleanolic acid is a promising drug for treating gliomas, but its underlying mechanism is unclear. This study aimed to determine the potential effect of oleanolic acid on glioma and its mechanism. METHODS: Firstly, the effects of oleanolic acid on the proliferation, invasion, and apoptosis of glioma U251 cells were detected by in vitro experiments such as MTT assay, cell cloning, and flow cytometry. The transcriptome data of U251 cells treated with oleanolic acid and untreated were sequenced by mRNA, and then the differentially expressed genes were analyzed by gene ontology (GO), genomic encyclopedia (KEGG) pathway enrichment analysis, and protein interaction topology analysis. The underlying mechanism of oleanolic acid was predicted, and the related protein interaction network was constructed. Finally, Western blotting and molecular docking techniques verified the mRNA sequencing results. RESULTS: Oleanolic acid could effectively inhibit the proliferation, colony formation, and invasion of U251 cells and induce apoptosis. A total of 446 differentially expressed genes were detected by mRNA sequencing, of which 96 genes were up-regulated and 350 down-regulated. Oleanolic acid induces the TNF signal pathway and NOD-like receptor signal pathway at the intracellular level. In addition, OAS2, OASL, IFIT3, RSAD2, and IRF1 may be the core targets of oleanolic acid in treating glioma. CONCLUSION: Transcriptome combined with molecular docking technique is used to predict the possible mechanism of oleanolic acid in the treatment of glioma, which provides new ideas and insights for developing and researching antitumor drugs.


Asunto(s)
Neoplasias Encefálicas , Glioma , Ácido Oleanólico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
15.
China CDC Wkly ; 4(40): 895-901, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36285321

RESUMEN

Mathematical models have played an important role in the management of the coronavirus disease 2019 (COVID-19) pandemic. The aim of this review is to describe the use of COVID-19 mathematical models, their classification, and the advantages and disadvantages of different types of models. We conducted subject heading searches of PubMed and China National Knowledge Infrastructure with the terms "COVID-19," "Mathematical Statistical Model," "Model," "Modeling," "Agent-based Model," and "Ordinary Differential Equation Model" and classified and analyzed the scientific literature retrieved in the search. We categorized the models as data-driven or mechanism-driven. Data-driven models are mainly used for predicting epidemics, and have the advantage of rapid assessment of disease instances. However, their ability to determine transmission mechanisms is limited. Mechanism-driven models include ordinary differential equation (ODE) and agent-based models. ODE models are used to estimate transmissibility and evaluate impact of interventions. Although ODE models are good at determining pathogen transmission characteristics, they are less suitable for simulation of early epidemic stages and rely heavily on availability of first-hand field data. Agent-based models consider influences of individual differences, but they require large amounts of data and can take a long time to develop fully. Many COVID-19 mathematical modeling studies have been conducted, and these have been used for predicting trends, evaluating interventions, and calculating pathogen transmissibility. Successful infectious disease modeling requires comprehensive considerations of data, applications, and purposes.

16.
Nat Commun ; 13(1): 682, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115520

RESUMEN

Structural variants (SVs) represent a major source of genetic diversity and are related to numerous agronomic traits and evolutionary events; however, their comprehensive identification and characterization in cucumber (Cucumis sativus L.) have been hindered by the lack of a high-quality pan-genome. Here, we report a graph-based cucumber pan-genome by analyzing twelve chromosome-scale genome assemblies. Genotyping of seven large chromosomal rearrangements based on the pan-genome provides useful information for use of wild accessions in breeding and genetic studies. A total of ~4.3 million genetic variants including 56,214 SVs are identified leveraging the chromosome-level assemblies. The pan-genome graph integrating both variant information and reference genome sequences aids the identification of SVs associated with agronomic traits, including warty fruits, flowering times and root growth, and enhances the understanding of cucumber trait evolution. The graph-based cucumber pan-genome and the identified genetic variants provide rich resources for future biological research and genomics-assisted breeding.


Asunto(s)
Cucumis sativus/genética , Domesticación , Variación Genética , Genoma de Planta/genética , Genómica/métodos , Sitios de Carácter Cuantitativo/genética , Cromosomas de las Plantas/genética , Cucumis sativus/clasificación , Cucumis sativus/crecimiento & desarrollo , ADN de Plantas/química , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Mutación INDEL , Filogenia , Polimorfismo de Nucleótido Simple , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN/métodos , Especificidad de la Especie , Sintenía
17.
Front Public Health ; 10: 920312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844849

RESUMEN

Background: Meteorological factors have been proven to affect pathogens; both the transmission routes and other intermediate. Many studies have worked on assessing how those meteorological factors would influence the transmissibility of COVID-19. In this study, we used generalized estimating equations to evaluate the impact of meteorological factors on Coronavirus disease 2019 (COVID-19) by using three outcome variables, which are transmissibility, incidence rate, and the number of reported cases. Methods: In this study, the data on the daily number of new cases and deaths of COVID-19 in 30 provinces and cities nationwide were obtained from the provincial and municipal health committees, while the data from 682 conventional weather stations in the selected provinces and cities were obtained from the website of the China Meteorological Administration. We built a Susceptible-Exposed-Symptomatic-Asymptomatic-Recovered/Removed (SEIAR) model to fit the data, then we calculated the transmissibility of COVID-19 using an indicator of the effective reproduction number (Reff ). To quantify the different impacts of meteorological factors on several outcome variables including transmissibility, incidence rate, and the number of reported cases of COVID-19, we collected panel data and used generalized estimating equations. We also explored whether there is a lag effect and the different times of meteorological factors on the three outcome variables. Results: Precipitation and wind speed had a negative effect on transmissibility, incidence rate, and the number of reported cases, while humidity had a positive effect on them. The higher the temperature, the lower the transmissibility. The temperature had a lag effect on the incidence rate, while the remaining five meteorological factors had immediate and lag effects on the incidence rate and the number of reported cases. Conclusion: Meteorological factors had similar effects on incidence rate and number of reported cases, but different effects on transmissibility. Temperature, relative humidity, precipitation, sunshine hours, and wind speed had immediate and lag effects on transmissibility, but with different lag times. An increase in temperature may first cause a decrease in virus transmissibility and then lead to a decrease in incidence rate. Also, the mechanism of the role of meteorological factors in the process of transmissibility to incidence rate needs to be further explored.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Humanos , Humedad , Conceptos Meteorológicos , Tiempo (Meteorología)
18.
Front Public Health ; 10: 813860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321194

RESUMEN

Introduction: Modeling on infectious diseases is significant to facilitate public health policymaking. There are two main mathematical methods that can be used for the simulation of the epidemic and prediction of optimal early warning timing: the logistic differential equation (LDE) model and the more complex generalized logistic differential equation (GLDE) model. This study aimed to compare and analyze these two models. Methods: We collected data on (coronavirus disease 2019) COVID-19 and four other infectious diseases and classified the data into four categories: different transmission routes, different epidemic intensities, different time scales, and different regions, using R2 to compare and analyze the goodness-of-fit of LDE and GLDE models. Results: Both models fitted the epidemic curves well, and all results were statistically significant. The R2 test value of COVID-19 was 0.924 (p < 0.001) fitted by the GLDE model and 0.916 (p < 0.001) fitted by the LDE model. The R2 test value varied between 0.793 and 0.966 fitted by the GLDE model and varied between 0.594 and 0.922 fitted by the LDE model for diseases with different transmission routes. The R2 test values varied between 0.853 and 0.939 fitted by the GLDE model and varied from 0.687 to 0.769 fitted by the LDE model for diseases with different prevalence intensities. The R2 test value varied between 0.706 and 0.917 fitted by the GLDE model and varied between 0.410 and 0.898 fitted by the LDE model for diseases with different time scales. The GLDE model also performed better with nation-level data with the R2 test values between 0.897 and 0.970 vs. 0.731 and 0.953 that fitted by the LDE model. Both models could characterize the patterns of the epidemics well and calculate the acceleration weeks. Conclusion: The GLDE model provides more accurate goodness-of-fit to the data than the LDE model. The GLDE model is able to handle asymmetric data by introducing shape parameters that allow it to fit data with various distributions. The LDE model provides an earlier epidemic acceleration week than the GLDE model. We conclude that the GLDE model is more advantageous in asymmetric infectious disease data simulation.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Epidemias , COVID-19/epidemiología , Enfermedades Transmisibles/epidemiología , Humanos , Modelos Logísticos , Salud Pública
19.
Trop Med Infect Dis ; 7(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36136620

RESUMEN

Background: With the progress of urbanization, the mobility of people has gradually increased, which has led to the further spread of dengue fever. This study evaluated the transmissibility of dengue fever within districts and between different districts in Zhanjiang City to provide corresponding advice for cross-regional prevention and control. Methods: A mathematical model of transmission dynamics was developed to explore the transmissibility of the disease and to compare that between different regions. Results: A total of 467 DF cases (6.38 per 100,000 people) were reported in Zhanjiang City in 2018. In the model, without any intervention, the number of simulated cases in this epidemic reached about 950. The dengue fever transmissions between districts varied within and between regions. When the spread of dengue fever from Chikan Districts to other districts was cut off, the number of cases in other districts dropped significantly or even to zero. When the density of mosquitoes in Xiashan District was controlled, the dengue fever epidemic in Xiashan District was found to be significantly alleviated. Conclusions: When there is a dengue outbreak, timely measures can effectively control it from developing into an epidemic. Different prevention and control measures in different districts could efficiently reduce the risk of disease transmission.

20.
PLoS Negl Trop Dis ; 16(5): e0010432, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533208

RESUMEN

BACKGROUND: This study aimed to explore whether the transmission routes of severe fever with thrombocytopenia syndrome (SFTS) will be affected by tick density and meteorological factors, and to explore the factors that affect the transmission of SFTS. We used the transmission dynamics model to calculate the transmission rate coefficients of different transmission routes of SFTS, and used the generalized additive model to uncover how meteorological factors and tick density affect the spread of SFTS. METHODS: In this study, the time-varying infection rate coefficients of different transmission routes of SFTS in Jiangsu Province from 2017 to 2020 were calculated based on the previous multi-population multi-route dynamic model (MMDM) of SFTS. The changes in transmission routes were summarized by collecting questionnaires from 537 SFTS cases in 2018-2020 in Jiangsu Province. The incidence rate of SFTS and the infection rate coefficients of different transmission routes were dependent variables, and month, meteorological factors and tick density were independent variables to establish a generalized additive model (GAM). The optimal GAM was selected using the generalized cross-validation score (GCV), and the model was validated by the 2016 data of Zhejiang Province and 2020 data of Jiangsu Province. The validated GAMs were used to predict the incidence and infection rate coefficients of SFTS in Jiangsu province in 2021, and also to predict the effect of extreme weather on SFTS. RESULTS: The number and proportion of infections by different transmission routes for each year and found that tick-to-human and human-to-human infections decreased yearly, but infections through animal and environmental transmission were gradually increasing. MMDM fitted well with the three-year SFTS incidence data (P<0.05). The best intervention to reduce the incidence of SFTS is to reduce the effective exposure of the population to the surroundings. Based on correlation tests, tick density was positively correlated with air temperature, wind speed, and sunshine duration. The best GAM was a model with tick transmissibility to humans as the dependent variable, without considering lagged effects (GCV = 5.9247E-22, R2 = 96%). Reported incidence increased when sunshine duration was higher than 11 h per day and decreased when temperatures were too high (>28°C). Sunshine duration and temperature had the greatest effect on transmission from host animals to humans. The effect of extreme weather conditions on SFTS was short-term, but there was no effect on SFTS after high temperature and sunshine hours. CONCLUSIONS: Different factors affect the infection rate coefficients of different transmission routes. Sunshine duration, relative humidity, temperature and tick density are important factors affecting the occurrence of SFTS. Hurricanes reduce the incidence of SFTS in the short term, but have little effect in the long term. The most effective intervention to reduce the incidence of SFTS is to reduce population exposure to high-risk environments.


Asunto(s)
Síndrome de Trombocitopenia Febril Grave , Garrapatas , Animales , China/epidemiología , Incidencia , Conceptos Meteorológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA