Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Am Chem Soc ; 146(2): 1250-1256, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38189233

RESUMEN

Luminescent covalent organic frameworks (LCOFs) have emerged as indispensable candidates in various applications due to their greater tunable emitting properties and structural robustness compared to small molecule emitters. An unsolved issue in this area is developing highly luminescent LCOFs of which the nonradiative quenching pathways were suppressed as much as possible. Here, a robust aminal-linked COF (DD-COF) possessing perdeuterated light-emitting monomers was designed and synthesized. The solid-state photoluminescence quantum yield of the DD-COF reaches 81%, significantly outcompeting all state-of-the-art LCOFs reported so far. The exceptional luminescent efficiency is attributed to the inhibition of different pathways of nonradiative decay, especially from bond vibrations where only substitution by a heavier isotope with a lower zero-point vibration frequency works. Furthermore, the prepared deuterated COF not only boosts higher photostability under UV irradiation but also enables superior fluorescence sensing performance for iodine detection compared to nondeuterated COF.

2.
Small ; 20(11): e2306769, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37932007

RESUMEN

Fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body. However, existing wearable sweat detection systems face challenges in efficiently collecting and detecting fresh sweat in real-time. Additionally, they often lack the necessary deformation capabilities, resulting in discomfort for the wearer. Here, a fully elastic wearable electrochemical sweat detection system is developed that integrates a sweat-collecting microfluidic chip, a multi-parameter electrochemical sensor, a micro-heater, and a sweat detection elastic circuit board system. The unique tree-bionic structure of the microfluidic chip significantly enhances the efficiency of fresh sweat collection and discharge, enabling real-time detection by the electrochemical sensors. The sweat multi-parameter electrochemical sensor offers high-precision and high-sensitivity measurements of sodium ions, potassium ions, lactate, and glucose. The electronic system is built on an elastic circuit board that matches perfectly to wrinkled skin, ensuring improved wearing comfort and enabling multi-channel data sampling, processing, and wireless transmission. This state-of-the-art system represents a significant advancement in the field of elastic wearable sweat detection and holds promising potential for extending its capabilities to the detection of other sweat markers or various wearable applications.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Sudor/química , Microfluídica , Árboles , Biónica , Iones/análisis , Técnicas Biosensibles/métodos
3.
Small ; : e2403422, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152940

RESUMEN

Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.

4.
Phys Chem Chem Phys ; 25(14): 10082-10089, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36974477

RESUMEN

The thermoelectric transport properties of two-dimensional (2D) layered NaCuX (X = S, Se) are investigated by employing first-principles based Boltzmann transport theory. Single quintuple NaCuX layers have a relatively large Seebeck coefficient (S), electrical conductivity (σ) and hence power factor (PF = S2σ) for a p-type heavy doped region due to the valence band degeneracy. The largely reduced σ by dominant polar scattering leads to a PF up to 0.27 and 0.84 mW m-1 K-2 at 1200 K for p-type NaCuS and NaCuSe monolayers, respectively. The high polarizability of the Cu-X bonds in the CuX4 tetrahedra leads to anharmonic phonon behavior which produces an intrinsic lattice thermal conductivity (κl) as low as 1.03 and 0.75 W m-1 K-1 at 300 K for NaCuS and NaCuSe, respectively. The predicted figure of merit (zT) increases monotonically from around 0.25 at 300 K to 2.01 at 1200 K at an optimal carrier density of around 1 × 1013 cm-2 for p-type NaCuSe and from around 0.09 at 300 K to 1.15 at 1200 K at an optimal carrier density of around 1 × 1014 cm-2 for p-type NaCuS. These findings indicate that the NaCuS, especially NaCuSe, monolayers are promising 2D thermoelectric materials persisting at high temperature.

5.
J Chem Phys ; 159(4)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37503848

RESUMEN

Thermoelectric transport properties of Janus monolayers M2P2S3Se3 (M = Zn and Cd) are investigated by the first-principles based transport theory. The Zn2P2S3Se3 and Cd2P2S3Se3 monolayers are indirect-gap semiconductors. The high polarizability of M-Se/S bonds in the MS3Se3 distorted octahedrons leads to anharmonic phonon behavior, which produces an intrinsic lattice thermal conductivity (κl) as low as 1.06 and 1.99 W m-1 K-1 at 300 K for Zn2P2S3Se3 and Cd2P2S3Se3 monolayers, respectively. The lower κl of the Zn2P2S3Se3 monolayer is mainly attributed to more pronounced flat modes of the phonon dispersion in a frequency range of 1-1.7 THz caused by the softer Zn-Se/S bonds. The polar optical phonon scattering of carriers surprisingly plays a dominant role in carrier transport of both the monolayers, which greatly suppresses the electrical conductivity and thereby the power factor by about an order of magnitude. The predicted figure of merit (zT) increases monotonically with the temperature at the optimal carrier density, and at the operating temperature of 1200 K, it reaches an optimal value of 0.86 at an optimal electron density of ∼1.5×1013 cm-2 for the n-type Zn2P2S3Se3 monolayer and 0.30 at an optimal electron density of ∼7×1012 cm-2 for the n-type Cd2P2S3Se3 monolayer.

6.
Small ; 16(9): e1903916, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31663295

RESUMEN

Exosomes are secreted by most cell types and circulate in body fluids. Recent studies have revealed that exosomes play a significant role in intercellular communication and are closely associated with the pathogenesis of disease. Therefore, exosomes are considered promising biomarkers for disease diagnosis. However, exosomes are always mixed with other components of body fluids. Consequently, separation methods for exosomes that allow high-purity and high-throughput separation with a high recovery rate and detection techniques for exosomes that are rapid, highly sensitive, highly specific, and have a low detection limit are indispensable for diagnostic applications. For decades, many exosome separation and detection techniques have been developed to achieve the aforementioned goals. However, in most cases, these two techniques are performed separately, which increases operation complexity, time consumption, and cost. The emergence of microfluidics offers a promising way to integrate exosome separation and detection functions into a single chip. Herein, an overview of conventional and microfluidics-based techniques for exosome separation and detection is presented. Moreover, the advantages and drawbacks of these techniques are compared.


Asunto(s)
Técnicas y Procedimientos Diagnósticos , Exosomas , Microfluídica , Transporte Biológico , Biomarcadores/metabolismo , Técnicas y Procedimientos Diagnósticos/tendencias , Exosomas/metabolismo
7.
Eur Geriatr Med ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190227

RESUMEN

PURPOSE: Frailty is a rising global health issue in ageing society. Easily accessible and sensitive tools are needed for frailty monitoring while routine blood factors can be potential candidates. METHODS: Data from 1907 participants (aged 60 years or above) were collected from the 4th to 9th wave of the English longitudinal study of ageing. 14 blood factors obtained from blood tests were included in the analysis. A 52-item frailty index (FI) was calculated for frailty evaluation. Logistic regression and Cox proportional hazards analysis were used to explore the relationships between baseline blood factors and the incidence of frailty over time respectively. All analyses were controlled for age and sex. RESULTS: The mean age of participants was 67.3 years and 47.2% of them were male. Our study identified that 8 blood factors (mean corpuscular haemoglobin, HDL, triglyceride, ferritin, hsCRP, dehydroepiandrosterone, haemoglobin, and WBC) involved in inflammatory, nutritional and metabolic processes were associated with frailty. The combined model with these 8 blood factors had an AUC of 0.758 at cross-sectional level. In the Cox proportional hazards analysis, higher triglyceride (HR: 1.30, 95%CI: 1.07 ~ 1.59), WBC (HR: 1.16, 95%CI: 1.05 ~ 1.28), and lower HDL (HR: 0.58, 95%CI: 0.38 ~ 0.90) at baseline were linked to greater risk of developing frailty within 10 years. Compared to adults without abnormal blood factors at baseline, the hazard ratios of participants with two or more abnormal blood factors were almost twofold higher in developing frailty over time. CONCLUSIONS: Routine blood factors, particularly triglyceride, HDL and WBC, could be used for frailty screening in clinical practice and estimate the development of frailty over time.

8.
Adv Healthc Mater ; 13(15): e2304249, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38325812

RESUMEN

Triple-negative breast cancer (TNBC), due to its high malignant degree and strong invasion ability, leads to poor prognosis and easy recurrence, so effectively curbing the invasion of TNBC is the key to obtaining the ideal therapeutic effect. Herein, a therapeutic strategy is developed that curbs high invasions of TNBC by inhibiting cell physiological activity and disrupting tumor cell structural function to achieve the time and space dual-blockade. The time blockade is caused by the breakthrough of the tumor-reducing blockade based on the ferroptosis process and the oxidation-toxic free radicals generated by enhanced sonodynamic therapy (SDT). Meanwhile, alkyl radicals from 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) and 1O2 attacked the organelles of tumor cells under ultrasound (US), reducing the physiological activity of the cells. The attack of free radicals on the cytoskeleton, especially on the proteins of F-actin and its assembly pathway, achieves precise space blockade of TNBC. The damage to the cytoskeleton and the suppression of the repair process leads to a significant decline in the ability of tumor cells to metastasize and invade other organs. In summary, the FTM@AM nanoplatforms have a highly effective killing and invasion inhibition effect on invasive TNBC mediated by ultrasound, showcasing promising clinical transformation potential.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias de la Mama Triple Negativas , Terapia por Ultrasonido , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Femenino , Terapia por Ultrasonido/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Línea Celular Tumoral , Animales , Ferroptosis/efectos de los fármacos , Ratones , Hierro/química , Invasividad Neoplásica , Nanopartículas/química , Ratones Endogámicos BALB C
9.
Talanta ; 279: 126585, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053361

RESUMEN

The separation of target microparticles using microfluidic systems owns extensive applications in biomedical, chemical, and materials science fields. Integration of microfluidic sorting systems employing dielectrophoresis (DEP) technology has been widely investigated. However, enhancing separation efficiency, purity, stability, and integration remains a pressing issue. This study proposes a stepwise multi-stage continuous DEP separation microfluidic chip with a microfilter structure. By leveraging a stepwise electrode configuration, a gradient electric field is generated to drive target microparticles along the electric field gradient, thereby enhancing separation efficiency. Innovative integration of a microfilter structure facilitates simultaneous filtration and improves flow field distribution, thus enhancing system stability. Through the synergistic effect of stepwise electrodes and the microfilter structure, superior coupling of electric and flow fields is achieved, consequently improving the sorting purity, separation efficiency, and system stability of the DEP-based microfluidic sorting system. Validation through simulation and separation of polystyrene microspheres demonstrates the excellent particle separation performance of the proposed system. It evidently shows potential for seamless extension to various biological microparticle sorting applications, harboring significant prospects in the biomedical domain field.

10.
Redox Biol ; 70: 103064, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38320455

RESUMEN

Amyloid-beta (Aß) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aß phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aß phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aß phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aß pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.


Asunto(s)
Enfermedad de Alzheimer , Antígenos CD36 , Microglía , Selenoproteínas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Lipoilación , Ratones Transgénicos , Microglía/metabolismo , Fagocitosis , Selenoproteínas/genética , Selenoproteínas/metabolismo , Antígenos CD36/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA