Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 106(9-10): 3397-3403, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35501488

RESUMEN

A mass of nanocarriers have been exploited and utilized for prevention of fungi, including organic nanomaterials, inorganic nanoparticles, polypeptides, and viruses. Due to biological safety and flexible genetic engineering property, bacteriophages, as bionanoparticles, are widely used in the diagnosis and treatment of microorganisms, which can be easily loaded with proteins and drugs. In particular, random DNAs can be inserted into the genome of phage by phage display technology, and it is possible to obtain the peptide/antibody targeting fungi from phage library. Meanwhile, phages displaying specific peptides are able to conjugate with other nanoparticles, which have both characteristics of peptides and nanomaterials, and have been used for precise detection of fungi. Additionally, phage nanomaterials as carriers can reduce the toxicity of drugs, increase the time of drug circulation, stimulate the immune response, and have an anti-fungal effect by itself. In this review, we summarize the recent applications of bacteriophages on the study of fungi. The improvement of our understanding of bacteriophage will supply new tools for controlling fungal infections. These phage libraries were used to pan the specific peptides for diagnosis, prevention, and treatment of fungi. KEY POINTS: • System fungal infection has no significant clinical symptoms; it is important to develop vaccine, diagnosis, and therapeutic agents to reduce mortality; phage is an ideal carrier for vaccine and drug to stimulate immune response and improve the efficiency of drug, and also can improve the sensitivity of detection • This review summarized recent studies on phage-based fungal vaccine and threw light on the developing therapeutic phage in the treatment of fungal infection.


Asunto(s)
Bacteriófagos , Micosis , Nanopartículas , Bacteriófagos/genética , Técnicas de Visualización de Superficie Celular , Excipientes/metabolismo , Humanos , Biblioteca de Péptidos , Péptidos/metabolismo
2.
Biol Chem ; 402(7): 839-848, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33894112

RESUMEN

Glioblastoma (GBM) is the most common and fatal type of primary malignant tumours in the central nervous system. Cytokines such as interleukins (ILs) play an important role in GBM progression. Our present study found that IL-24 is down-regulated in GBM cells. Recombinant IL-24 (rIL-24) can suppress the in vitro migration and invasion of GBM cells while increase its chemo-sensitivity to temozolomide (TMZ) treatment. rIL-24 negatively regulates the expression of Zeb1, one well known transcription factors of epithelial to mesenchymal transition (EMT) of cancer cells. Over expression of Zeb1 can attenuate IL-24-suppressed malignancy of GBM cells. Mechanistically, IL-24 decreases the protein stability of Zeb1 while has no effect on its mRNA stability. It is due to that IL-24 can increase the expression of FBXO45, which can destabilize Zeb1 in cancer cells. Collectively, we reveal that IL-24 can suppress the malignancy of GBM cells via decreasing the expression of Zeb1. It suggests that targeted activation of IL-24 signals might be a potential therapy approach for GBM treatment.


Asunto(s)
Neoplasias del Sistema Nervioso Central/metabolismo , Glioblastoma/metabolismo , Interleucinas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Células Cultivadas , Neoplasias del Sistema Nervioso Central/patología , Glioblastoma/patología , Humanos , Interleucinas/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
3.
Small ; 16(22): e2000420, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32350995

RESUMEN

MoS2 , one of the most valued 2D materials beyond graphene, shows potential for future applications in postsilicon digital electronics and optoelectronics. However, achieving hole transport in MoS2 , which is dominated by electron transport, is always a challenge. Here, MoS2 transistors gated by electrolyte gel exhibit the characteristics of hole and electron transport, a high on/off ratio over 105 , and a low subthreshold swing below 50 mV per decade. Due to the electrolyte gel, the density of electrons and holes in the MoS2 channel reaches ≈9 × 1013 and 8.85 × 1013 cm-2 , respectively. The electrolyte gel-assisted MoS2 phototransistor exhibits adjustable positive and negative photoconductive effects. Additionally, the MoS2 p-n homojunction diode affected by electrolyte gel shows high performance and a rectification ratio over 107 . These results demonstrate that modifying the conductance of MoS2 through electrolyte gel has great potential in highly integrated electronics and optoelectronic photodetectors.

4.
Opt Express ; 28(3): 4169-4177, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122074

RESUMEN

Gallium oxide (Ga2O3) has been studied as one of the most promising wide bandgap semiconductors during the past decade. Here, we prepared high quality ß-Ga2O3 films by pulsed laser deposition. ß-Ga2O3 films of different thicknesses were achieved and their crystal properties were comprehensively studied. As thickness increases, grain size and surface roughness are both increased. Based on these ß-Ga2O3 films, a series of ultraviolet (UV) photodetectors with interdigital electrodes structure were prepared. These devices embrace an ultralow dark current of 100 fA, and high photocurrent on/off ratio of 10E8 under UV light illumination. The photoresponse time is 4 ms which is faster than most of previous works. This work paves the way for the potential application of Ga2O3 in the field of UV detection.

5.
Nutr Cancer ; 72(7): 1225-1230, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31603353

RESUMEN

Purpose: The consequences of malnutrition include increased risk of many complications. The assessment and management of nutritional problems are essential in supportive care of patients undergoing therapy. The primary objective of the present study was to assess changes in the nutritional status in lung cancer patients who had undergone chemotherapy.Patients and methods: Preliminary and post-chemotherapy assessments of patients' nutritional status and medical characteristics were conducted using the Patient-Generated Subjective Global Assessment (PG-SGA) from July 2014 to May 2016 at Harbin Medical University Cancer Hospital. Four hundred sixty-five advanced lung cancer patients (51.8% men and 48.2% women with a mean (SD) age of 60.2 ± 9.8 years) participated in the present study. PG-SGA was assessed prior to the initiation of chemotherapy and after four cycles of chemotherapy.Results: We found that 11.4% of the patients were severely malnourished and 65.6% of the patients were moderately malnourished prior to chemotherapy. After chemotherapy, 52.9% of the patients were considered moderately malnourished, whereas 33.8% were severely malnourished. The nutritional status had deteriorated in the majority of patients. After chemotherapy, there was a rise in the prevalence of nutrition impact symptoms.Conclusions: A deteriorated nutritional status was the result of the side effects caused by chemotherapy in the patients of the present study. These findings highlight that more attention should be paid to improve the nutritional status in patients with advanced lung cancer undergoing chemotherapy, and proper nutrition education and nutritional support should be provided to these patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Desnutrición/epidemiología , Estado Nutricional , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Anciano , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/epidemiología , Femenino , Humanos , Neoplasias Pulmonares/epidemiología , Masculino , Persona de Mediana Edad , Evaluación Nutricional , Prevalencia , Estudios Prospectivos , Carcinoma Pulmonar de Células Pequeñas/epidemiología , Encuestas y Cuestionarios
6.
J Cell Physiol ; 234(5): 7579-7586, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30370535

RESUMEN

Lung adenocarcinoma (LUAD) poses a significant threat to public health worldwide, while the genetic and epigenetic abnormalities involved in the oncogenesis of LUAD remains unknown. This study aimed to identify and validate key genes during the development and progression of LUAD by multiomics analysis. First, Empirical Analysis of Digital Gene Expression Data in R (EdgeR) was used to identify differentially regulated genes between normal samples and LUAD samples. Then significance analysis of microarrays (SAM) was used to identify differentially methylated genes and regulated microRNAs (miRNAs) between normal samples and LUAD samples. Following that, Kyoto Encyclopedia of Genes and Genomes (KEGG)-enrichment analysis was used to analyze the function that these genes enriched in. A total of 4,816 genes, 419 miRNAs, and 4,476 methylated genes that were significantly differentially expressed corresponding to the normal tissues in LUAD were obtained, and some of the pathways these genes enriched in were the same. Moreover, 255 genes differentially methylated and expressed at the same time were also found, and these 255 genes were the target genes of the miRNAs differentially expressed in LUAD. Finally, nine genes (BRCA1, COL1A1, ESR1, FGFR2, HNF4A, IGFBP3, MET, MMP3, and PAK1) network analysis, and two of which were found to be related to the survival of LUAD patients. In summary, a total of nine genes that may play important roles in the development of LUAD were identified, and two (PAK1 and FGFR2) of them can be served as prognostic biomarkers for LUAD patients. The genes found in this study played different roles in the tumor progression of LUAD, indicating these genes may be considered as potential target genes for LUAD treatment.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Metilación de ADN/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , ARN Mensajero/genética , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad
7.
Small ; 14(9)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29356363

RESUMEN

Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light-emitting devices, and photodiodes. In this work, high-performance photovoltaic photodetectors based on MoTe2 /MoS2 vertical heterojunctions are demonstrated by exfoliating-restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>105 ) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W-1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications.

8.
Nanotechnology ; 29(48): 485204, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30215619

RESUMEN

Photodetectors with two-dimensional (2D) materials on a SiO2/Si substrate have been extensively explored. However, these photodetectors often suffer from a large gate voltage and relatively low photoresponsivity due to the low efficiency light absorption of 2D materials. Here, we develop a MoS2 photodetector based on the Al2O3/ITO (indium tin oxide)/SiO2/Si substrate with ultrahigh photoresponsivity of 2.7 × 104 A W-1. Most of the incident light is reflected by the interface of stacked Al2O3/ITO/SiO2 substrate, which significantly increases the light absorption of 2D materials. With the help of thinner and high-κ Al2O3 dielectric, the current ON/OFF ratio could exceed 109 with a gate voltage no more than 2 V. Enhanced gate regulation also brings about a relatively high mobility of 84 cm2 V-1 s-1 and subthreshold swing of 104 mV dec-1. Additionally, two different photocurrent generation mechanisms have also been revealed by tuning the gate voltage. The reflection-enhancement substrate assisted MoS2 photodetector provides a new idea for improving the performance of 2D material photodetectors, which can be perfectly combined with other methods.

9.
Nanotechnology ; 29(10): 105202, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29384728

RESUMEN

In recent years, the electrical characteristics of WSe2 field-effect transistors (FETs) have been widely investigated with various dielectrics. Among them, being able to perfectly tune the polarity of WSe2 is meaningful and promising work. In this work, we systematically study the electrical properties of bilayer WSe2 FETs modulated by ferroelectric polymer poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)). Compared to traditional gate dielectric SiO2, the P(VDF-TrFE) can not only tune both electron and hole concentrations to the same high level, but also improve the hole mobility of bilayer WSe2 to 265.96 cm2 V-1 s-1 under SiO2 gating. Its drain current on/off ratio is also improved to 2 × 105 for p-type and 4 × 105 for n-type driven by P(VDF-TrFE). More importantly, the ambipolar behaviors of bilayer WSe2 are effectively achieved and maintained because of the remnant polarization field of P(VDF-TrFE). This work indicates that WSe2 FETs with P(VDF-TrFE) gating have huge potential for complementary logic transistor applications, and paves an effective way to achieve in-plane p-n junctions.

10.
Nanotechnology ; 29(13): 134002, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29339566

RESUMEN

Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

11.
Nano Lett ; 17(11): 6534-6539, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28968111

RESUMEN

Spin-orbit coupling (SOC) plays a crucial role for spintronics applications. Here we present the first demonstration that the Rashba SOC at the SrTiO3-based interfaces is highly tunable by photoinduced charge doping, that is, optical gating. Such optical manipulation is nonvolatile after the removal of the illumination in contrast to conventional electrostatic gating and also erasable via a warming-cooling cycle. Moreover, the SOC evolutions tuned by illuminations with different wavelengths at various gate voltages coincide with each other in different doping regions and collectively form an upward-downward trend curve: In response to the increase of conductivity, the SOC strength first increases and then decreases, which can be attributed to the orbital hybridization of Ti 3d subbands. More strikingly, the optical manipulation is effective enough to tune the interferences of Bloch wave functions from constructive to destructive and therefore to realize a transition from weak localization to weak antilocalization. The present findings pave a way toward the exploration of photoinduced nontrivial quantum states and the design of optically controlled spintronic devices.

12.
Phys Chem Chem Phys ; 19(26): 16960-16968, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28636685

RESUMEN

Memristive devices are promising circuit elements that enable novel computational approaches which go beyond the von-Neumann paradigms. Here by tuning the chemistry at the Al-LaNiO3 (LNO) interface, a metal-metal junction, we engineer good switching behavior with good electroresistance (ON-OFF resistance ratios of 100), and repeatable multiple resistance states. The active material responsible for such a behavior is a self-formed sandwich of an AlxOy layer at the interface obtained by grabbing oxygen by Al from LNO. Using aberration corrected electron microscopy and transport measurements, it is confirmed that the memristive hysteresis occurs due to the electric field driven O2- (or ) cycling between LNO (reservoir) and the interlayer, which drives the redox reactions forming and dissolving Al nanoclusters in the AlxOy matrix. This work provides clear insights into and details on precise oxygen control at such interfaces and can be useful for newer opportunities in oxitronics.

13.
Sensors (Basel) ; 17(10)2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29039815

RESUMEN

Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

14.
Sensors (Basel) ; 17(5)2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28452933

RESUMEN

Under the high dynamic conditions, Global Navigation Satellite System (GNSS) signals produce great Doppler frequency shifts, which hinders the fast acquisition of signals. Inertial Navigation System (INS)-aided acquisition can improve the acquisition performance, whereas the accuracy of Doppler shift and code phase estimation are mainly determined by the INS precision. The relation between the INS accuracy and Doppler shift estimation error has been derived, while the relation between the INS accuracy and code phase estimation error has not been deduced. In this paper, in order to theoretically analyze the effects of INS errors on the performance of Doppler shift and code phase estimations, the connections between them are re-deduced. Moreover, the curves of the corresponding relations are given for the first time. Then, in order to have a better verification of the INS-aided acquisition, a high dynamic scenario is designed. Furthermore, by using the deduced mathematical relation, the effects of different grade INS on the GNSS (including Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS)) signal acquisition are analyzed. Experimental results demonstrate that the INS-aided acquisition can reduce the search range of local frequency and code phase, and achieve fast acquisition. According to the experimental results, a suitable INS can be chosen for the deeply coupled integration.

15.
Pak J Med Sci ; 33(1): 215-220, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28367203

RESUMEN

OBJECTIVE: To identify and analyze the 50 most-cited gastroenterology and hepatology articles originating from mainland China. METHODS: We utilized the 2015 edition of Journal Citation Reports and PubMed to determine the 50 most-cited gastroenterology and hepatology articles from 75 professional journals and four leading journals in clinical medicine, which are The New England Journal of Medicine, The Lancet, The Journal of the American Medical Association, and The British Medical Journal. Then we excluded the articles written outside mainland China and collected the basic information, including the title, authors, year of publication, source journal, city, institution, number of citations, and topic of the research. RESULTS: The number of citations for the top 50 papers ranged from 279 to 89 (mean, 129). These articles were published between 2005 and 2012, in which 2009 was the year with the largest number of highly cited papers(13). All articles were published in 15 journals. The journal Hepatology published the largest number of articles(21), followed by Journal of Gastroenterology and Hepatology(4), Journal of Hepatology(4) and World Journal of Gastroenterology(4). The top 50 articles originated mainly from Shanghai(20), Guangzhou(13) and Beijing(6). Sun Yat-sen University produced most highly cited papers(10). The number of basic research was far more than clinical research, of which the ratio was about 1.78(32:18). In all these articles, hepatocellular carcinoma was the most-discussed topic(19), followed by hepatitis B virus(8) and endoscopic(5). CONCLUSIONS: Although a large gap remains between mainland China and the global community, the gastroenterology and hepatology research from China is gradually recognized by the world.

16.
Nanotechnology ; 27(44): 445201, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27670378

RESUMEN

Two-dimensional materials are promising candidates for electronic and optoelectronic applications. MoTe2 has an appropriate bandgap for both visible and infrared light photodetection. Here we fabricate a high-performance photodetector based on few-layer MoTe2. Raman spectral properties have been studied for different thicknesses of MoTe2. The photodetector based on few-layer MoTe2 exhibits broad spectral range photodetection (0.6-1.55 µm) and a stable and fast photoresponse. The detectivity is calculated to be 3.1 × 10(9) cm Hz(1/2) W(-1) for 637 nm light and 1.3 × 10(9) cm Hz(1/2) W(-1) for 1060 nm light at a backgate voltage of 10 V. The mechanisms of photocurrent generation have been analyzed in detail, and it is considered that a photogating effect plays an important role in photodetection. The appreciable performance and detection over a broad spectral range make it a promising material for high-performance photodetectors.

17.
Nanotechnology ; 27(36): 364002, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27478899

RESUMEN

Photodetectors based on two-dimensional (2D) transition-metal dichalcogenides have been studied extensively in recent years. However, the detective spectral ranges, dark current and response time are still unsatisfactory, even under high gate and source-drain bias. In this work, the photodetectors of In2Se3 have been fabricated on a ferroelectric field effect transistor structure. Based on this structure, high performance photodetectors have been achieved with a broad photoresponse spectrum (visible to 1550 nm) and quick response (200 µs). Most importantly, with the intrinsic huge electric field derived from the polarization of ferroelectric polymer (P(VDF-TrFE)) gating, a low dark current of the photodetector can be achieved without additional gate bias. These studies present a crucial step for further practical applications for 2D semiconductors.

18.
Sensors (Basel) ; 16(8)2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27483270

RESUMEN

In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method.

19.
Sensors (Basel) ; 16(12)2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27941600

RESUMEN

The stability of a fiber optic gyroscope (FOG) in measurement while drilling (MWD) could vary with time because of changing temperature, high vibration, and sudden power failure. The dynamic Allan variance (DAVAR) is a sliding version of the Allan variance. It is a practical tool that could represent the non-stationary behavior of the gyroscope signal. Since the normal DAVAR takes too long to deal with long time series, a fast DAVAR algorithm has been developed to accelerate the computation speed. However, both the normal DAVAR algorithm and the fast algorithm become invalid for discontinuous time series. What is worse, the FOG-based MWD underground often keeps working for several days; the gyro data collected aboveground is not only very time-consuming, but also sometimes discontinuous in the timeline. In this article, on the basis of the fast algorithm for DAVAR, we make a further advance in the fast algorithm (improved fast DAVAR) to extend the fast DAVAR to discontinuous time series. The improved fast DAVAR and the normal DAVAR are used to responsively characterize two sets of simulation data. The simulation results show that when the length of the time series is short, the improved fast DAVAR saves 78.93% of calculation time. When the length of the time series is long ( 6 × 10 5 samples), the improved fast DAVAR reduces calculation time by 97.09%. Another set of simulation data with missing data is characterized by the improved fast DAVAR. Its simulation results prove that the improved fast DAVAR could successfully deal with discontinuous data. In the end, a vibration experiment with FOGs-based MWD has been implemented to validate the good performance of the improved fast DAVAR. The results of the experience testify that the improved fast DAVAR not only shortens computation time, but could also analyze discontinuous time series.

20.
Front Immunol ; 15: 1342728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562933

RESUMEN

Exosomes play a crucial role in facilitating intercellular communication within organisms. Emerging evidence indicates that a distinct variant of programmed cell death ligand-1 (PD-L1), found on the surface of exosomes, may be responsible for orchestrating systemic immunosuppression that counteracts the efficacy of anti-programmed death-1 (PD-1) checkpoint therapy. Specifically, the presence of PD-L1 on exosomes enables them to selectively target PD-1 on the surface of CD8+ T cells, leading to T cell apoptosis and impeding T cell activation or proliferation. This mechanism allows tumor cells to evade immune pressure during the effector stage. Furthermore, the quantification of exosomal PD-L1 has the potential to serve as an indicator of the dynamic interplay between tumors and immune cells, thereby suggesting the promising utility of exosomes as biomarkers for both cancer diagnosis and PD-1/PD-L1 inhibitor therapy. The emergence of exosomal PD-L1 inhibitors as a viable approach for anti-tumor treatment has garnered significant attention. Depleting exosomal PD-L1 may serve as an effective adjunct therapy to mitigate systemic immunosuppression. This review aims to elucidate recent insights into the role of exosomal PD-L1 in the field of immune oncology, emphasizing its potential as a diagnostic, prognostic, and therapeutic tool in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Ligandos , Apoptosis , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA