Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Reproduction ; 161(3): 289-294, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33300886

RESUMEN

Ovarian follicle development is regulated by locally produced TGFß superfamily members. The TGFß type III receptor (TGFBR3, or betaglycan), which regulates the actions of diverse TGFß ligands, including inhibins, is expressed in different ovarian cell types. However, its functional roles in the ovary have not been investigated in vivo. Here, we ablated Tgfbr3 in murine oocytes using the Cre-loxP system. Oocyte-specific Tgfbr3 knockout (cKO) females were fertile, producing litters of similar size and frequency as controls. Their ovarian weights and histology were also normal. Though we confirmed efficient recombination of the floxed alleles, we did not detect Tgfbr3 mRNA in purified oocytes from superovulated cKO or control mice. These results challenge earlier observations of betaglycan protein expression in this cell type. Regardless, Tgfbr3 in the murine oocyte is clearly dispensable for female fertility.


Asunto(s)
Proteoglicanos , Receptores de Factores de Crecimiento Transformadores beta , Animales , Femenino , Fertilidad , Ratones , Oocitos , Proteoglicanos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética
2.
Endocrinology ; 163(11)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35957608

RESUMEN

The inhibins control reproduction by suppressing follicle-stimulating hormone synthesis in pituitary gonadotrope cells. The newly discovered inhibin B coreceptor, TGFBR3L, is selectively and highly expressed in gonadotropes in both mice and humans. Here, we describe our initial characterization of mechanisms controlling cell-specific Tgfbr3l/TGFBR3L transcription. We identified two steroidogenic factor 1 (SF-1 or NR5A1) cis-elements in the proximal Tgfbr3l promoter in mice. SF-1 induction of murine Tgfbr3l promoter-reporter activity was inhibited by mutations in one or both sites in heterologous cells. In homologous cells, mutation of these cis-elements or depletion of endogenous SF-1 similarly decreased reporter activity. We observed nearly identical results when using a human TGFBR3L promoter-reporter. The Tgfbr3l gene was tightly compacted and Tgfbr3l mRNA expression was essentially absent in gonadotropes of SF-1 (Nr5a1) conditional knockout mice. During murine embryonic development, Tgfbr3l precedes Nr5a1 expression, though the two transcripts are fully colocalized by embryonic day 18.5 and thereafter. Collectively, these data indicate that SF-1 directly regulates Tgfbr3l/TGFBR3L transcription and is required for postnatal expression of the gene in gonadotropes.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Factores de Crecimiento Transformadores beta , Factor Esteroidogénico 1 , Animales , Femenino , Hormona Folículo Estimulante/metabolismo , Proteínas de Homeodominio/metabolismo , Inhibinas/genética , Inhibinas/metabolismo , Ratones , Embarazo , ARN Mensajero , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo
3.
Elife ; 102021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34939930

RESUMEN

Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G-protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.


Asunto(s)
Fertilidad , Hormona Luteinizante/metabolismo , Receptores LHRH/química , Receptores LHRH/fisiología , Animales , Pollos , Femenino , Hormona Folículo Estimulante/metabolismo , Ratones , Ratones Transgénicos , Folículo Ovárico/fisiología , Receptores Acoplados a Proteínas G/fisiología
4.
Sci Adv ; 7(51): eabl4391, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910520

RESUMEN

Follicle-stimulating hormone (FSH), a key regulator of ovarian function, is often used in infertility treatment. Gonadal inhibins suppress FSH synthesis by pituitary gonadotrope cells. The TGFß type III receptor, betaglycan, is required for inhibin A suppression of FSH. The inhibin B co-receptor was previously unknown. Here, we report that the gonadotrope-restricted transmembrane protein, TGFBR3L, is the elusive inhibin B co-receptor. TGFBR3L binds inhibin B but not other TGFß family ligands. TGFBR3L knockdown or overexpression abrogates or confers inhibin B activity in cells. Female Tgfbr3l knockout mice exhibit increased FSH levels, ovarian follicle development, and litter sizes. In contrast, female mice lacking both TGFBR3L and betaglycan are infertile. TGFBR3L's function and cell-specific expression make it an attractive new target for the regulation of FSH and fertility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA