Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 55(3): 1014-6, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26792549

RESUMEN

The new compound (Cs6Cl)6Cs3[Ga53Se96] with its own structure type has been discovered by high-temperature solid-state reactions. The compound features a unique long period-stacking structure of layers that are built by the commonly observed dimeric Ga2Se6 unit extending in cis or trans intralayer linking. Single-crystal X-ray diffraction analyses show the trigonal space group R3̅m (No. 166) and a = 11.990(5) Å, c = 50.012(4) Å, and V = 6226.5(6) Å(3). The UV-vis-near-IR spectrum reveals a wide band gap of 2.74 eV that agrees well with the electronic structure calculation.

2.
Inorg Chem ; 54(3): 867-71, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25418200

RESUMEN

Thermoelectric (TE) materials are of worldwide interest for energy sustainability through direct waste-heat-to-electricity conversion. Practically, a TE power generator requires a large working temperature gradient; to achieve high efficiency, key TE materials with high ZT values are necessary and, furthermore, their ZT values should decline as little as possible over the imposed temperature range. Unfortunately, sharp ZT declines in all of the known materials are inevitable. Here we found the bulk superionic α-Ag(1-x)CuSe material exhibits unusual weakly temperature-dependent ZT values in the range of 480-693 K with the smallest ZT-T slope known to date. These result from the Seebeck coefficient balance of the countercontributions of holes and electrons and the weakly temperature-dependent thermal conductivity.

3.
RSC Adv ; 9(2): 1047-1054, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35517602

RESUMEN

We present a theoretical study on the potential thermoelectric performance of antimony nanoribbons (SNRs). Based on density functional theory and the semiclassical transport model, the thermoelectric figure of merit ZT was calculated for various Sb nanoribbon sizes and different chiralities. The results indicated that the chemical-bond-driven edge reconstruction of nanoribbons (denoted as SNRs-recon) eliminated all of the dangling bonds and passivated all of the boundary antimony atoms with 3-fold coordination. SNRs-recon are the most energy favorable compared to the ribbons with unsaturated edge atoms. Semimetal to semiconductor transition occurred in SNRs-recon. The band gap was width-dependent in armchair SNRs (denoted as ASNRs-recon), whereas it was width-independent in zigzag SNRs (ZSNRs-recon). After nanolization and reconstruction, the TE properties of SNRs were enhanced due to higher Seebeck coefficient and lower thermal conductivity. The thermoelectric properties of n-doped ASNRs-recon and p-doped ZSNRs-recon showed width-dependent odd-even oscillation and eventually resulted in ZT values of 0.75 and 0.60, respectively. Upon increasing the ribbon width, ZT of n-doped ASNRs-recon decreased and approached a constant value of about 0.85. However, n-doped ZSNRs-recon exhibited poor TE performance compared with the others. Importantly, the ZT value could be optimized to as high as 1.91 at 300 K, which was larger than those of Sb-based bulk materials and 100 times that of thin Sb films. These optimizations make the materials promising room-temperature high-performance thermoelectric materials. Furthermore, the proposed new concept of chemical-bond-driven edge reconstruction may be useful for many other related systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA