RESUMEN
Glucocorticoids are considered first-line therapy in a variety of eosinophilic disorders. They lead to a transient, profound decrease in circulating human eosinophils within hours of administration. The phenomenon of glucocorticoid-induced eosinopenia has been the basis for the use of glucocorticoids in eosinophilic disorders, and it has intrigued clinicians for 7 decades, yet its mechanism remains unexplained. To investigate, we first studied the response of circulating eosinophils to in vivo glucocorticoid administration in 3 species and found that the response in rhesus macaques, but not in mice, closely resembled that in humans. We then developed an isolation technique to purify rhesus macaque eosinophils from peripheral blood and performed live tracking of zirconium-89-oxine-labeled eosinophils by serial positron emission tomography/computed tomography imaging, before and after administration of glucocorticoids. Glucocorticoids induced rapid bone marrow homing of eosinophils. The kinetics of glucocorticoid-induced eosinopenia and bone marrow migration were consistent with those of the induction of the glucocorticoid-responsive chemokine receptor CXCR4, and selective blockade of CXCR4 reduced or eliminated the early glucocorticoid-induced reduction in blood eosinophils. Our results indicate that glucocorticoid-induced eosinopenia results from CXCR4-dependent migration of eosinophils to the bone marrow. These findings provide insight into the mechanism of action of glucocorticoids in eosinophilic disorders, with implications for the study of glucocorticoid resistance and the development of more targeted therapies. The human study was registered at ClinicalTrials.gov as #NCT02798523.
Asunto(s)
Médula Ósea/inmunología , Eosinófilos/inmunología , Glucocorticoides/efectos adversos , Leucopenia/inducido químicamente , Leucopenia/inmunología , Receptores CXCR4/inmunología , Animales , Médula Ósea/patología , Eosinófilos/patología , Femenino , Glucocorticoides/administración & dosificación , Humanos , Leucopenia/patología , Macaca mulatta , Masculino , RatonesRESUMEN
During the last decade, alphaviruses became widely used for expression of heterologous genetic information and development of recombinant vaccines against a variety of human and animal pathogens. In this study, we compared a number of vectors based on the genome of Sindbis (SINV) and Venezuelan equine encephalitis (VEEV) viruses for their ability to express the Rift Valley fever virus (RVFV) envelope glycoprotein Gn and induce a protective immune response against RVFV infection. Our results suggest that (i) application of VEEV-based expression systems appears to be advantageous, when compared to similar systems designed on the basis of the SINV genome. (ii) Alphavirus-specific E3 and E2 proteins and furin-specific cleavage sites can be used for engineering secreted forms of the proteins. (iii) Alphaviruses can be modified for expression of the large fragments of heterologous proteins on the surface of chimeric, infectious viral particles. Thus, alphavirus-based expression systems may have the potential for a broader application beyond their current use as replicons or double-subgenomic vectors.