Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34695914

RESUMEN

BACKGROUND: This study aimed to determine the effects of a standard therapeutic cooling protocol using crushed ice on the elbow to explore if changes in the motor unit (MU) firing rates in the first dorsal interosseous (FDI) muscle are comparable to known changes in sensory and motor nerve conduction velocity (NCV) due to a regional temperature drop around a peripheral nerve. METHODS: Twelve healthy individuals were assessed before cooling, immediately after cooling, and 15 min of rewarming. Assessments included two standard non-invasive nerve conduction velocity tests and a non-invasive investigation of the MU firing rates using surface electromyography decomposition (dEMG). RESULTS: Repeated ANOVAs showed significant differences in the MU firing rates and NCV between time points (p = 0.01 and p < 0.001). All measures showed significant differences between pre and post cooling and between pre-cooling and 15 min of passive re-warming, however, no changes were seen between post cooling and rewarming except in the sensory NCV, which increased but did not return to the pre-cooled state. CONCLUSIONS: This current study showed a significant, temporary, and reversible reduction in ulnar NCV across the elbow in healthy subjects, which was associated with a significant decrease in mean MU firing rates in the FDI muscle.


Asunto(s)
Articulación del Codo , Codo , Frío , Electromiografía , Humanos , Conducción Nerviosa
2.
Sports Biomech ; : 1-12, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339268

RESUMEN

Despite squatting being important in strength training and rehabilitation, few studies have investigated motor unit (MU) behaviour. This study explored the MU behaviour of vastus medialis (VM) and vastus lateralis (VL) during the concentric and eccentric phases of a squat exercise performed at two speeds. Twenty-two participants had surface dEMG sensors attached over VM and VL, and IMUs recorded thigh and shank angular velocities. Participants performed squats at 15 and 25 repetitions per minute in a randomised order, and EMG signals were decomposed into their MU action potential trains. A four factor (muscle × speed × contraction phase × sexes) mixed methods ANOVA revealed significant main effects for MU firing rates between speeds, between muscles and between sexes, but not contraction phases. Post hoc analysis showed significantly greater MU firing rates and amplitudes in VM. A significant interaction was seen between speed and the contraction phases. Further analysis revealed significantly greater firing rates during the concentric compared to the eccentric phases, and between speeds during the eccentric phase only. VM and VL respond differently during squatting depending on speed and contraction phase. These new insights in VM and VL MU behvaviour may be useful when designing training and rehabilitation protocols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA