Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Immunol ; 210(11): 1804-1814, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074207

RESUMEN

Somatic hypermutation (SHM) is necessary for Ab diversification and involves error-prone DNA repair of activation-induced cytidine deaminase-induced lesions in germinal center (GC) B cells but can also cause genomic instability. GC B cells express low levels of the DNA repair protein apurinic/apyrimidinic (AP) endonuclease (APE)1 and high levels of its homolog APE2. Reduced SHM in APE2-deficient mice suggests that APE2 promotes SHM, but these GC B cells also exhibit reduced proliferation that could impact mutation frequency. In this study, we test the hypothesis that APE2 promotes and APE1 suppresses SHM. We show how APE1/APE2 expression changes in primary murine spleen B cells during activation, impacting both SHM and class-switch recombination (CSR). High levels of both APE1 and APE2 early after activation promote CSR. However, after 2 d, APE1 levels decrease steadily with each cell division, even with repeated stimulation, whereas APE2 levels increase with each stimulation. When GC-level APE1/APE2 expression was engineered by reducing APE1 genetically (apex1+/-) and overexpressing APE2, bona fide activation-induced cytidine deaminase-dependent VDJH4 intron SHM became detectable in primary B cell cultures. The C terminus of APE2 that interacts with proliferating cell nuclear Ag promotes SHM and CSR, although its ATR-Chk1-interacting Zf-GRF domain is not required. However, APE2 does not increase mutations unless APE1 is reduced. Although APE1 promotes CSR, it suppresses SHM, suggesting that downregulation of APE1 in the GC is required for SHM. Genome-wide expression data compare GC and cultured B cells and new models depict how APE1 and APE2 expression and protein interactions change during B cell activation and affect the balance between accurate and error-prone repair during CSR and SHM.


Asunto(s)
Linfocitos B , Reparación del ADN , Animales , Ratones , Linfocitos B/metabolismo , Técnicas de Cultivo de Célula , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Mutación , Hipermutación Somática de Inmunoglobulina
2.
PLoS Genet ; 11(8): e1005438, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26263206

RESUMEN

Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citidina Desaminasa/fisiología , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Inmunoprecipitación de Cromatina , ADN Intergénico/genética , Proteínas de Unión al ADN , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Proteica , Bazo/citología , Bazo/enzimología , Secuencias Repetidas en Tándem
3.
Proc Natl Acad Sci U S A ; 111(25): 9217-22, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24927551

RESUMEN

Somatic hypermutation (SHM) of antibody variable region genes is initiated in germinal center B cells during an immune response by activation-induced cytidine deaminase (AID), which converts cytosines to uracils. During accurate repair in nonmutating cells, uracil is excised by uracil DNA glycosylase (UNG), leaving abasic sites that are incised by AP endonuclease (APE) to create single-strand breaks, and the correct nucleotide is reinserted by DNA polymerase ß. During SHM, for unknown reasons, repair is error prone. There are two APE homologs in mammals and, surprisingly, APE1, in contrast to its high expression in both resting and in vitro-activated splenic B cells, is expressed at very low levels in mouse germinal center B cells where SHM occurs, and APE1 haploinsufficiency has very little effect on SHM. In contrast, the less efficient homolog, APE2, is highly expressed and contributes not only to the frequency of mutations, but also to the generation of mutations at A:T base pair (bp), insertions, and deletions. In the absence of both UNG and APE2, mutations at A:T bp are dramatically reduced. Single-strand breaks generated by APE2 could provide entry points for exonuclease recruited by the mismatch repair proteins Msh2-Msh6, and the known association of APE2 with proliferating cell nuclear antigen could recruit translesion polymerases to create mutations at AID-induced lesions and also at A:T bp. Our data provide new insight into error-prone repair of AID-induced lesions, which we propose is facilitated by down-regulation of APE1 and up-regulation of APE2 expression in germinal center B cells.


Asunto(s)
Linfocitos B/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/biosíntesis , Endonucleasas/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Centro Germinal/metabolismo , Mutación , Hipermutación Somática de Inmunoglobulina/fisiología , Animales , Linfocitos B/citología , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Centro Germinal/citología , Ratones , Ratones Noqueados , Enzimas Multifuncionales , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo
4.
J Immunol ; 193(3): 1440-50, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24973444

RESUMEN

Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The AID C terminus is required for CSR, but not for S-region DNA double-strand breaks (DSBs) during CSR, and it is not required for SHM. AID lacking the C terminus (ΔAID) is a dominant negative (DN) mutant, because human patients heterozygous for this mutant fail to undergo CSR. In agreement, we show that ΔAID is a DN mutant when expressed in AID-sufficient mouse splenic B cells. To have DN function, ΔAID must have deaminase activity, suggesting that its ability to induce DSBs is important for the DN function. Supporting this hypothesis, Msh2-Msh6 have been shown to contribute to DSB formation in S regions, and we find in this study that Msh2 is required for the DN activity, because ΔAID is not a DN mutant in msh2(-/-) cells. Our results suggest that the DNA DSBs induced by ΔAID are unable to participate in CSR and might interfere with the ability of full-length AID to participate in CSR. We propose that ΔAID is impaired in its ability to recruit nonhomologous end joining repair factors, resulting in accumulation of DSBs that undergo aberrant resection. Supporting this hypothesis, we find that the S-S junctions induced by ΔAID have longer microhomologies than do those induced by full-length AID. In addition, our data suggest that AID binds Sµ regions in vivo as a monomer.


Asunto(s)
Citidina Desaminasa/fisiología , Reparación de la Incompatibilidad de ADN/inmunología , Reordenamiento Génico/inmunología , Animales , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Eliminación de Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fragmentos de Péptidos/genética , Cultivo Primario de Células
5.
J Immunol ; 193(2): 931-9, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24935922

RESUMEN

Activation-induced cytidine deaminase (AID) initiates a process generating DNA mutations and breaks in germinal center (GC) B cells that are necessary for somatic hypermutation and class-switch recombination. GC B cells can "tolerate" DNA damage while rapidly proliferating because of partial suppression of the DNA damage response by BCL6. In this study, we develop a model to study the response of mouse GC B cells to endogenous DNA damage. We show that the base excision repair protein apurinic/apyrimidinic endonuclease (APE) 2 protects activated B cells from oxidative damage in vitro. APE2-deficient mice have smaller GCs and reduced Ab responses compared with wild-type mice. DNA double-strand breaks are increased in the rapidly dividing GC centroblasts of APE2-deficient mice, which activate a p53-independent cell cycle checkpoint and a p53-dependent apoptotic response. Proliferative and/or oxidative damage and AID-dependent damage are additive stresses that correlate inversely with GC size in wild-type, AID-, and APE2-deficient mice. Excessive double-strand breaks lead to decreased expression of BCL6, which would enable DNA repair pathways but limit GC cell numbers. These results describe a nonredundant role for APE2 in the protection of GC cells from AID-independent damage, and although GC cells uniquely tolerate DNA damage, we find that the DNA damage response can still regulate GC size through pathways that involve p53 and BCL6.


Asunto(s)
Linfocitos B/inmunología , Citidina Desaminasa/inmunología , Daño del ADN , Endonucleasas/inmunología , Centro Germinal/inmunología , Animales , Apoptosis/genética , Apoptosis/inmunología , Linfocitos B/metabolismo , Ciclo Celular/genética , Ciclo Celular/inmunología , Proliferación Celular , Células Cultivadas , Citidina Desaminasa/deficiencia , Citidina Desaminasa/genética , Roturas del ADN de Doble Cadena , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Endonucleasas/deficiencia , Endonucleasas/genética , Citometría de Flujo , Centro Germinal/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Enzimas Multifuncionales , Estrés Oxidativo/inmunología , Proteínas Proto-Oncogénicas c-bcl-6 , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Hipermutación Somática de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/inmunología , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología
6.
J Immunol ; 192(10): 4887-96, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24729610

RESUMEN

Activation-induced cytidine deaminase (AID) initiates Ab class-switch recombination (CSR) in activated B cells resulting in exchanging the IgH C region and improved Ab effector function. During CSR, AID instigates DNA double-strand break (DSB) formation in switch (S) regions located upstream of C region genes. DSBs are necessary for CSR, but improper regulation of DSBs can lead to chromosomal translocations that can result in B cell lymphoma. The protein kinase ataxia telangiectasia mutated (ATM) is an important proximal regulator of the DNA damage response (DDR), and translocations involving S regions are increased in its absence. ATM phosphorylates H2AX, which recruits other DNA damage response (DDR) proteins, including mediator of DNA damage checkpoint 1 (Mdc1) and p53 binding protein 1 (53BP1), to sites of DNA damage. As these DDR proteins all function to promote repair and recombination of DSBs during CSR, we examined whether mouse splenic B cells deficient in these proteins would show alterations in S region DSBs when undergoing CSR. We find that in atm(-/-) cells Sµ DSBs are increased, whereas DSBs in downstream Sγ regions are decreased. We also find that mutations in the unrearranged Sγ3 segment are reduced in atm(-/-) cells. Our data suggest that ATM increases AID targeting and activity at downstream acceptor S regions during CSR and that in atm(-/-) cells Sµ DSBs accumulate as they lack a recombination partner.


Asunto(s)
Citidina Desaminasa/inmunología , Reordenamiento Génico de Linfocito B/inmunología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/inmunología , Citidina Desaminasa/genética , Daño del ADN/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Reordenamiento Génico de Linfocito B/genética , Histonas/genética , Histonas/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Ratones , Ratones Noqueados , Fosforilación/genética , Fosforilación/inmunología , Proteína 1 de Unión al Supresor Tumoral P53
7.
J Immunol ; 187(5): 2464-75, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21804017

RESUMEN

Activation-induced cytidine deaminase (AID) is induced in B cells during an immune response and is essential for both class-switch recombination (CSR) and somatic hypermutation of Ab genes. The C-terminal 10 aa of AID are required for CSR but not for somatic hypermutation, although their role in CSR is unknown. Using retroviral transduction into mouse splenic B cells, we show that the C terminus is not required for switch (S) region double-strand breaks (DSBs) and therefore functions downstream of DSBs. Using chromatin immunoprecipitation, we show that AID binds cooperatively with UNG and the mismatch repair proteins Msh2-Msh6 to Ig Sµ and Sγ3 regions, and this depends on the C terminus and the deaminase activity of AID. We also show that mismatch repair does not contribute to the efficiency of CSR in the absence of the AID C terminus. Although it has been demonstrated that both UNG and Msh2-Msh6 are important for introduction of S region DSBs, our data suggest that the ability of AID to recruit these proteins is important for DSB resolution, perhaps by directing the S region DSBs toward accurate and efficient CSR via nonhomologous end joining.


Asunto(s)
Citidina Desaminasa/metabolismo , Proteínas de Unión al ADN/metabolismo , Cambio de Clase de Inmunoglobulina/fisiología , Región de Cambio de la Inmunoglobulina/fisiología , Proteína 2 Homóloga a MutS/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Separación Celular , Inmunoprecipitación de Cromatina , Citidina Desaminasa/química , Citometría de Flujo , Inmunoglobulina G , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
J Immunol ; 186(4): 1943-50, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21228350

RESUMEN

B cell development involves rapid cellular proliferation, gene rearrangements, selection, and differentiation, and it provides a powerful model to study DNA repair processes in vivo. Analysis of the contribution of the base excision repair pathway in lymphocyte development has been lacking primarily owing to the essential nature of this repair pathway. However, mice deficient for the base excision repair enzyme, apurinic/apyrimidinic endonuclease 2 (APE2) protein develop relatively normally, but they display defects in lymphopoiesis. In this study, we present an extensive analysis of bone marrow hematopoiesis in mice nullizygous for APE2 and find an inhibition of the pro-B to pre-B cell transition. We find that APE2 is not required for V(D)J recombination and that the turnover rate of APE2-deficient progenitor B cells is nearly normal. However, the production rate of pro- and pre-B cells is reduced due to a p53-dependent DNA damage response. FACS-purified progenitors from APE2-deficient mice differentiate normally in response to IL-7 in in vitro stromal cell cocultures, but pro-B cells show defective expansion. Interestingly, APE2-deficient mice show a delay in recovery of B lymphocyte progenitors following bone marrow depletion by 5-fluorouracil, with the pro-B and pre-B cell pools still markedly decreased 2 wk after a single treatment. Our data demonstrate that APE2 has an important role in providing protection from DNA damage during lymphoid development, which is independent from its ubiquitous and essential homolog APE1.


Asunto(s)
Subgrupos de Linfocitos B/enzimología , Subgrupos de Linfocitos B/inmunología , Endonucleasas/fisiología , Fluorouracilo/administración & dosificación , Células Madre Hematopoyéticas/enzimología , Subgrupos Linfocitarios/enzimología , Linfopoyesis/inmunología , Animales , Subgrupos de Linfocitos B/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Daño del ADN/inmunología , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Reparación del ADN/inmunología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Endonucleasas/deficiencia , Endonucleasas/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Depleción Linfocítica , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Linfopoyesis/efectos de los fármacos , Linfopoyesis/genética , Ratones , Ratones Noqueados , Enzimas Multifuncionales , Mielopoyesis/efectos de los fármacos , Mielopoyesis/genética , Mielopoyesis/inmunología , Proteína p53 Supresora de Tumor/fisiología
9.
J Immunol ; 184(11): 6177-87, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20483782

RESUMEN

Ig class switch recombination (CSR) occurs in activated mature B cells, and causes an exchange of the IgM isotype for IgG, IgE, or IgA isotypes, which increases the effectiveness of the humoral immune response. DNA ds breaks in recombining switch (S) regions, where CSR occurs, are required for recombination. Activation-induced cytidine deaminase initiates DNA ds break formation by deamination of cytosines in S regions. This reaction requires reactive oxygen species (ROS) intermediates, such as hydroxyl radicals. In this study we show that the ROS scavenger N-acetylcysteine inhibits CSR. We also demonstrate that IFN-gamma treatment, which is used to induce IgG2a switching, increases intracellular ROS levels, and activates p53 in switching B cells, and show that p53 inhibits IgG2a class switching through its antioxidant-regulating function. Finally, we show that p53 inhibits DNA breaks and mutations in S regions in B cells undergoing CSR, suggesting that p53 inhibits the activity of activation-induced cytidine deaminase.


Asunto(s)
Antioxidantes/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Inmunoglobulina G/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Western Blotting , Separación Celular , Citidina Desaminasa/metabolismo , Roturas del ADN de Doble Cadena , Citometría de Flujo , Inmunoglobulina G/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p53 Supresora de Tumor/inmunología
10.
J Exp Med ; 202(4): 561-8, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16103411

RESUMEN

Class switch recombination (CSR) occurs by an intrachromosomal deletion whereby the IgM constant region gene (Cmu) is replaced by a downstream constant region gene. This unique recombination event involves formation of double-strand breaks (DSBs) in immunoglobulin switch (S) regions, and requires activation-induced cytidine deaminase (AID), which converts cytosines to uracils. Repair of the uracils is proposed to lead to DNA breaks required for recombination. Uracil DNA glycosylase (UNG) is required for most CSR activity although its role is disputed. Here we use ligation-mediated PCR to detect DSBs in S regions in splenic B cells undergoing CSR. We find that the kinetics of DSB induction corresponds with AID expression, and that DSBs are AID- and UNG-dependent and occur preferentially at G:C basepairs in WRC/GYW AID hotspots. Our results indicate that AID attacks cytosines on both DNA strands, and staggered breaks are processed to blunt DSBs at the initiating ss break sites. We propose a model to explain the types of end-processing events observed.


Asunto(s)
Linfocitos B/inmunología , Citidina Desaminasa/genética , ADN Glicosilasas/genética , Reordenamiento Génico de Linfocito B/genética , Cadenas mu de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/genética , Animales , Linfocitos B/citología , Citidina Desaminasa/inmunología , ADN/genética , ADN/inmunología , ADN Glicosilasas/inmunología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Reordenamiento Génico de Linfocito B/inmunología , Regiones Constantes de Inmunoglobulina/genética , Regiones Constantes de Inmunoglobulina/inmunología , Cadenas mu de Inmunoglobulina/inmunología , Ratones , Ratones Mutantes , Recombinación Genética/genética , Recombinación Genética/inmunología , Hipermutación Somática de Inmunoglobulina/inmunología , Bazo/citología , Bazo/inmunología , Uracil-ADN Glicosidasa
11.
J Immunol ; 181(12): 8450-9, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19050263

RESUMEN

When B cells are activated after immunization or infection, they exchange the gene encoding the Ig H chain C region by class switch recombination (CSR). CSR generally occurs by an intrachromosomal deletional recombination within switch (S) region sequences. However, approximately 10% of CSR events occur between chromosome homologs (trans- or interallele CSR), suggesting that the homologous chromosomes are aligned during CSR. Because the Mut S homolog 4 (Msh4) and Msh5 bind to Holliday junctions and are required for homologous recombination during meiosis in germ cells, we hypothesized these proteins might be involved in trans-chromosomal CSR (trans-CSR). Indeed, Msh4-Msh5 has recently been suggested to have a role in CSR. However, we find a large variety of alternative splice variants of Msh5 mRNA in splenic B cells rather than the full-length form found in testis. Most of these mRNAs are unlikely to be stable, suggesting that Msh5 might not be functional. Furthermore, we find that msh5 nullizygous B cells undergo CSR normally, have unaltered levels of trans-CSR, normal levels of DNA breaks in the Smu region, and normal S-S junctions. We also show that the S-S junctions from cis- and trans-CSR events have similar lengths of junctional microhomology, suggesting trans-CSR occurs by nonhomologous end joining as does intrachromosome (cis)-CSR. From these data, we conclude that Msh5 does not participate in CSR.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Cambio de Clase de Inmunoglobulina/genética , Recombinación Genética/inmunología , Empalme Alternativo/genética , Empalme Alternativo/inmunología , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/inmunología , Animales , Subgrupos de Linfocitos B/citología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , ARN/biosíntesis , Homología de Secuencia de Ácido Nucleico , Bazo/citología , Bazo/inmunología , Bazo/metabolismo
12.
PLoS One ; 10(8): e0134397, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267846

RESUMEN

Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid-/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sµ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)µ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sµ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sµ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sµ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sµ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.


Asunto(s)
Citidina Desaminasa/genética , Cambio de Clase de Inmunoglobulina/genética , Región de Cambio de la Inmunoglobulina/genética , Inmunoglobulinas/genética , Recombinación Genética , Sustitución de Aminoácidos/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Citidina Desaminasa/inmunología , ADN/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Humanos , Ratones , Ratones Noqueados , Mutación Missense
13.
DNA Repair (Amst) ; 12(12): 1087-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24084171

RESUMEN

During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol ß or λ could instead repair the lesion correctly. To assess the involvement of Pols ß and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3' flanking region in Peyer's patch germinal center (GC) B cells from polß(-/-)polλ(-/-), polλ(-/-), and polß(-/-) mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol ß having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol ß on mutations at the Ig Sµ locus, Sµ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol ß and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol ß-deficient B cells.


Asunto(s)
ADN Polimerasa beta/metabolismo , Inmunoglobulina G/genética , Región Variable de Inmunoglobulina/genética , Tasa de Mutación , Hipermutación Somática de Inmunoglobulina/genética , Animales , Linfocitos B/metabolismo , Células Cultivadas , Roturas del ADN de Doble Cadena , Embrión de Mamíferos , Femenino , Eliminación de Gen , Cambio de Clase de Inmunoglobulina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Puntual
14.
PLoS One ; 7(4): e36061, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22536455

RESUMEN

During activation of B cells to undergo class switching, B cell metabolism is increased, and levels of reactive oxygen species (ROS) are increased. ROS can oxidize DNA bases resulting in substrates for the DNA glycosylases Ogg1 and Nth1. Ogg1 and Nth1 excise oxidized bases, and nick the resulting abasic sites, forming single-strand DNA breaks (SSBs) as intermediates during the repair process. In this study, we asked whether splenic B cells from mice deficient in these two enzymes would show altered class switching and decreased DNA breaks in comparison with wild-type mice. As the c-myc gene frequently recombines with the IgH S region in B cells induced to undergo class switching, we also analyzed the effect of deletion of these two glycosylases on DSBs in the c-myc gene. We did not detect a reduction in S region or c-myc DSBs or in class switching in splenic B cells from Ogg1- or Nth1-deficient mice or from mice deficient in both enzymes.


Asunto(s)
Linfocitos B/inmunología , ADN Glicosilasas/deficiencia , Desoxirribonucleasa (Dímero de Pirimidina)/deficiencia , Cambio de Clase de Inmunoglobulina , Bazo/citología , Animales , Linfocitos B/enzimología , Proliferación Celular , Células Cultivadas , Roturas del ADN de Doble Cadena , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Técnicas de Inactivación de Genes , Genes myc , Cadenas Pesadas de Inmunoglobulina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética , Transcripción Genética
15.
J Immunol ; 179(9): 6064-71, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17947680

RESUMEN

Ab class switching occurs by an intrachromosomal recombination and requires generation of double-strand breaks (DSBs) in Ig switch (S) regions. Activation-induced cytidine deaminase (AID) converts cytosines in S regions to uracils, which are excised by uracil DNA glycosylase (UNG). Repair of the resulting abasic sites would yield single-strand breaks (SSBs), but how these SSBs are converted to DSBs is unclear. In mouse splenic B cells, we find that AID-dependent DSBs occur in Smu mainly in the G(1) phase of the cell cycle, indicating they are not created by replication across SSBs. Also, G(1) phase cells express AID, UNG, and mismatch repair (MMR) proteins and possess UNG activity. We find fewer S region DSBs in MMR-deficient B cells than in wild-type B cells, and still fewer in MMR-deficient/SmuTR(-/-) B cells, where targets for AID are sparse. These DSBs occur predominantly at AID targets. We also show that nucleotide excision repair does not contribute to class switching. Our data support the hypothesis that MMR is required to convert SSBs into DSBs when SSBs on opposite strands are too distal to form DSBs spontaneously.


Asunto(s)
Citidina Desaminasa/metabolismo , Daño del ADN/genética , Reparación de la Incompatibilidad de ADN , ADN/genética , Fase G1/genética , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Animales , Secuencia de Bases , Células Cultivadas , Citidina Desaminasa/deficiencia , Citidina Desaminasa/genética , Fase G1/inmunología , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Uracil-ADN Glicosidasa/metabolismo
16.
J Exp Med ; 204(12): 3017-26, 2007 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-18025127

RESUMEN

Antibody class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded breaks (DSBs) in switch-region DNA. The initial steps in DSB formation have been elucidated, involving cytosine deamination by activation-induced cytidine deaminase and generation of abasic sites by uracil DNA glycosylase. However, it is not known how abasic sites are converted into single-stranded breaks and, subsequently, DSBs. Apurinic/apyrimidinic endonuclease (APE) efficiently nicks DNA at abasic sites, but it is unknown whether APE participates in CSR. We address the roles of the two major mammalian APEs, APE1 and APE2, in CSR. APE1 deficiency causes embryonic lethality in mice; we therefore examined CSR and DSBs in mice deficient in APE2 and haploinsufficient for APE1. We show that both APE1 and APE2 function in CSR, resulting in the DSBs necessary for CSR and thereby describing a novel in vivo function for APE2.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Exodesoxirribonucleasas/genética , Cambio de Clase de Inmunoglobulina/inmunología , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/deficiencia , Exodesoxirribonucleasas/deficiencia , Regulación de la Expresión Génica/inmunología , Activación de Linfocitos , Ratones , Ratones Noqueados , Recombinación Genética , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA