Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biomed Eng Online ; 15: 37, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27067414

RESUMEN

BACKGROUND: Patient-specific simulations can provide insight into the mechanics of cardiovascular procedures. Amongst cardiovascular devices, non-compliant balloons are used in several minimally invasive procedures, such as balloon aortic valvuloplasty. Although these balloons are often included in the computer simulations of these procedures, validation of the balloon behaviour is often lacking. We therefore aim to create and validate a computational model of a valvuloplasty balloon. METHODS: A finite element (FE) model of a valvuloplasty balloon (Edwards 9350BC23) was designed, including balloon geometry and material properties from tensile testing. Young's Modulus and distensibility of different rapid prototyping (RP) rubber-like materials were evaluated to identify the most suitable compound to reproduce the mechanical properties of calcified arteries in which such balloons are likely to be employed clinically. A cylindrical, simplified implantation site was 3D printed using the selected material and the balloon was inflated inside it. The FE model of balloon inflation alone and its interaction with the cylinder were validated by comparison with experimental Pressure-Volume (P-V) and diameter-Volume (d-V) curves. RESULTS: Root mean square errors (RMSE) of pressure and diameter were RMSE P = 161.98 mmHg (3.8 % of the maximum pressure) and RMSE d = 0.12 mm (<0.5 mm, within the acquisition system resolution) for the balloon alone, and RMSE P = 94.87 mmHg (1.9 % of the maximum pressure) and RMSE d = 0.49 mm for the balloon inflated inside the simplified implantation site, respectively. CONCLUSIONS: This validated computational model could be used to virtually simulate more realistic valvuloplasty interventions.


Asunto(s)
Valvuloplastia con Balón/instrumentación , Análisis de Elementos Finitos , Fenómenos Mecánicos , Modelación Específica para el Paciente , Fantasmas de Imagen , Módulo de Elasticidad , Ensayo de Materiales , Presión , Impresión Tridimensional , Reproducibilidad de los Resultados , Estrés Mecánico , Resistencia a la Tracción , Factores de Tiempo
2.
Front Bioeng Biotechnol ; 10: 867877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433657

RESUMEN

Hemocompatibility of cardiovascular implants represents a major clinical challenge and, to date, optimal antithrombotic properties are lacking. Next-generation tissue-engineered heart valves (TEHVs) made from human-cell-derived tissue-engineered extracellular matrices (hTEMs) demonstrated their recellularization capacity in vivo and may represent promising candidates to avoid antithrombotic therapy. To further enhance their hemocompatibility, we tested hTEMs pre-endothelialization potential using human-blood-derived endothelial-colony-forming cells (ECFCs) and umbilical vein cells (control), cultured under static and dynamic orbital conditions, with either FBS or hPL. ECFCs performance was assessed via scratch assay, thereby recapitulating the surface damages occurring in transcatheter valves during crimping procedures. Our study demonstrated: feasibility to form a confluent and functional endothelium on hTEMs with expression of endothelium-specific markers; ECFCs migration and confluency restoration after crimping tests; hPL-induced formation of neo-microvessel-like structures; feasibility to pre-endothelialize hTEMs-based TEHVs and ECFCs retention on their surface after crimping. Our findings may stimulate new avenues towards next-generation pre-endothelialized implants with enhanced hemocompatibility, being beneficial for selected high-risk patients.

3.
Nat Rev Cardiol ; 18(2): 92-116, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32908285

RESUMEN

Valvular heart disease is a major cause of morbidity and mortality worldwide. Surgical valve repair or replacement has been the standard of care for patients with valvular heart disease for many decades, but transcatheter heart valve therapy has revolutionized the field in the past 15 years. However, despite the tremendous technical evolution of transcatheter heart valves, to date, the clinically available heart valve prostheses for surgical and transcatheter replacement have considerable limitations. The design of next-generation tissue-engineered heart valves (TEHVs) with repair, remodelling and regenerative capacity can address these limitations, and TEHVs could become a promising therapeutic alternative for patients with valvular disease. In this Review, we present a comprehensive overview of current clinically adopted heart valve replacement options, with a focus on transcatheter prostheses. We discuss the various concepts of heart valve tissue engineering underlying the design of next-generation TEHVs, focusing on off-the-shelf technologies. We also summarize the latest preclinical and clinical evidence for the use of these TEHVs and describe the current scientific, regulatory and clinical challenges associated with the safe and broad clinical translation of this technology.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Implantación de Prótesis de Válvulas Cardíacas , Válvulas Cardíacas , Ingeniería de Tejidos/métodos , Enfermedades de las Válvulas Cardíacas/fisiopatología , Enfermedades de las Válvulas Cardíacas/cirugía , Implantación de Prótesis de Válvulas Cardíacas/métodos , Humanos , Regeneración
4.
Sci Rep ; 10(1): 19882, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199702

RESUMEN

Regenerative tissue-engineered matrix-based heart valves (TEM-based TEHVs) may become an alternative to currently-used bioprostheses for transcatheter valve replacement. We recently identified TEM-based TEHVs-geometry as one key-factor guiding their remodeling towards successful long-term performance or failure. While our first-generation TEHVs, with a simple, non-physiological valve-geometry, failed over time due to leaflet-wall fusion phenomena, our second-generation TEHVs, with a computational modeling-inspired design, showed native-like remodeling resulting in long-term performance. However, a thorough understanding on how TEHV-geometry impacts the underlying host cell response, which in return determines tissue remodeling, is not yet fully understood. To assess that, we here present a comparative samples evaluation derived from our first- and second-generation TEHVs. We performed an in-depth qualitative and quantitative (immuno-)histological analysis focusing on key-players of the inflammatory and remodeling cascades (M1/M2 macrophages, α-SMA+- and endothelial cells). First-generation TEHVs were prone to chronic inflammation, showing a high presence of macrophages and α-SMA+-cells, hinge-area thickening, and delayed endothelialization. Second-generation TEHVs presented with negligible amounts of macrophages and α-SMA+-cells, absence of hinge-area thickening, and early endothelialization. Our results suggest that TEHV-geometry can significantly influence the host cell response by determining the infiltration and presence of macrophages and α-SMA+-cells, which play a crucial role in orchestrating TEHV remodeling.


Asunto(s)
Válvulas Cardíacas/fisiología , Inflamación/inmunología , Macrófagos/metabolismo , Ingeniería de Tejidos/métodos , Actinas/metabolismo , Animales , Bioprótesis , Diseño Asistido por Computadora , Válvulas Cardíacas/inmunología , Humanos , Fenotipo , Reemplazo de la Válvula Aórtica Transcatéter
5.
JACC Basic Transl Sci ; 5(1): 15-31, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32043018

RESUMEN

This study showed that bone marrow mononuclear cell pre-seeding had detrimental effects on functionality and in situ remodeling of bioresorbable bisurea-modified polycarbonate (PC-BU)-based tissue-engineered heart valves (TEHVs) used as transcatheter pulmonary valve replacement in sheep. We also showed heterogeneous valve and leaflet remodeling, which affects PC-BU TEHV safety, challenging their potential for clinical translation. We suggest that bone marrow mononuclear cell pre-seeding should not be used in combination with PC-BU TEHVs. A better understanding of cell-scaffold interaction and in situ remodeling processes is needed to improve transcatheter valve design and polymer absorption rates for a safe and clinically relevant translation of this approach.

6.
NPJ Regen Med ; 4: 14, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31240114

RESUMEN

Transcatheter valve replacement indication is currently being extended to younger and lower-risk patients. However, transcatheter prostheses are still based on glutaraldehyde-fixed xenogeneic materials. Hence, they are prone to calcification and long-term structural degeneration, which are particularly accelerated in younger patients. Tissue-engineered heart valves based on decellularized in vitro grown tissue-engineered matrices (TEM) have been suggested as a valid alternative to currently used bioprostheses, showing good performance and remodeling capacity as transcatheter pulmonary valve replacement (TPVR) in sheep. Here, we first describe the in vitro development of human cell-derived TEM (hTEM) and their application as tissue-engineered sinus valves (hTESVs), endowed with Valsalva sinuses for TPVR. The hTEM and hTESVs were systematically characterized in vitro by histology, immunofluorescence, and biochemical analyses, before they were evaluated in a pulse duplicator system under physiological pulmonary pressure conditions. Thereafter, transapical delivery of hTESVs was tested for feasibility and safety in a translational sheep model, achieving good valve performance and early cellular infiltration. This study demonstrates the principal feasibility of clinically relevant hTEM to manufacture hTESVs for TPVR.

7.
J Cardiovasc Transl Res ; 11(3): 182-191, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29560553

RESUMEN

Tissue-engineered heart valves with self-repair and regeneration properties may overcome the problem of long-term degeneration of currently used artificial prostheses. The aim of this study was the development and in vivo proof-of-concept of next-generation off-the-shelf tissue-engineered sinus valve (TESV) for transcatheter pulmonary valve replacement (TPVR). Transcatheter implantation of off-the-shelf TESVs was performed in a translational sheep model for up to 16 weeks. Transapical delivery of TESVs was successful and showed good acute and short-term performance (up to 8 weeks), which then worsened over time most likely due to a non-optimized in vitro valve design. Post-mortem analyses confirmed the remodelling potential of the TESVs, with host cell infiltration, polymer degradation, and collagen and elastin deposition. TESVs proved to be suitable as TPVR in a preclinical model, with encouraging short-term performance and remodelling potential. Future studies will enhance the clinical translation of such approach by improving the valve design to ensure long-term functionality.


Asunto(s)
Bioprótesis , Fibroblastos/trasplante , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Prótesis Valvulares Cardíacas , Válvula Pulmonar/cirugía , Ingeniería de Tejidos/métodos , Andamios del Tejido , Aleaciones , Animales , Células Cultivadas , Remoción de Dispositivos , Análisis de Falla de Equipo , Fibroblastos/patología , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Ensayo de Materiales , Modelos Animales , Prueba de Estudio Conceptual , Diseño de Prótesis , Falla de Prótesis , Válvula Pulmonar/diagnóstico por imagen , Válvula Pulmonar/patología , Válvula Pulmonar/fisiopatología , Oveja Doméstica , Stents , Factores de Tiempo
8.
Expert Rev Med Devices ; 15(1): 35-45, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29257706

RESUMEN

INTRODUCTION: Transcatheter aortic valve replacement (TAVR) is continuously evolving and is expected to surpass surgical valve implantation in the near future. Combining durable valve substitutes with minimally invasive implantation techniques might increase the clinical relevance of this therapeutic option for younger patient populations. Tissue engineering offers the possibility to create tissue engineered heart valves (TEHVs) with regenerative and self-repair capacities which may overcome the pitfalls of current TAVR prostheses. AREAS COVERED: This review focuses on off-the-shelf TEHVs which rely on a clinically-relevant in situ tissue engineering approach and which have already advanced into preclinical or first-in-human investigation. EXPERT COMMENTARY: Among the off-the-shelf in situ TEHVs reported in literature, the vast majority covers pulmonary valve substitutes, and only few are combined with transcatheter implantation technologies. Hence, further innovations should include the development of transcatheter tissue engineered aortic valve substitutes, which would considerably increase the clinical relevance of such prostheses.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/cirugía , Prótesis Valvulares Cardíacas , Regeneración , Ingeniería de Tejidos , Materiales Biocompatibles , Prótesis Valvulares Cardíacas/efectos adversos , Prótesis Valvulares Cardíacas/tendencias , Humanos , Diseño de Prótesis , Ingeniería de Tejidos/tendencias , Andamios del Tejido
9.
Sci Transl Med ; 10(440)2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743347

RESUMEN

Valvular heart disease is a major cause of morbidity and mortality worldwide. Current heart valve prostheses have considerable clinical limitations due to their artificial, nonliving nature without regenerative capacity. To overcome these limitations, heart valve tissue engineering (TE) aiming to develop living, native-like heart valves with self-repair, remodeling, and regeneration capacity has been suggested as next-generation technology. A major roadblock to clinically relevant, safe, and robust TE solutions has been the high complexity and variability inherent to bioengineering approaches that rely on cell-driven tissue remodeling. For heart valve TE, this has limited long-term performance in vivo because of uncontrolled tissue remodeling phenomena, such as valve leaflet shortening, which often translates into valve failure regardless of the bioengineering methodology used to develop the implant. We tested the hypothesis that integration of a computationally inspired heart valve design into our TE methodologies could guide tissue remodeling toward long-term functionality in tissue-engineered heart valves (TEHVs). In a clinically and regulatory relevant sheep model, TEHVs implanted as pulmonary valve replacements using minimally invasive techniques were monitored for 1 year via multimodal in vivo imaging and comprehensive tissue remodeling assessments. TEHVs exhibited good preserved long-term in vivo performance and remodeling comparable to native heart valves, as predicted by and consistent with computational modeling. TEHV failure could be predicted for nonphysiological pressure loading. Beyond previous studies, this work suggests the relevance of an integrated in silico, in vitro, and in vivo bioengineering approach as a basis for the safe and efficient clinical translation of TEHVs.


Asunto(s)
Simulación por Computador , Prótesis Valvulares Cardíacas , Diseño de Prótesis , Ingeniería de Tejidos/métodos , Investigación Biomédica Traslacional , Actinas/metabolismo , Animales , Endotelio Vascular/fisiología , Femenino , Implantación de Prótesis de Válvulas Cardíacas , Hemodinámica , Imagen por Resonancia Magnética , Modelos Animales , Válvula Pulmonar/fisiología , Ovinos , Factores de Tiempo , Reemplazo de la Válvula Aórtica Transcatéter
10.
Biomaterials ; 125: 101-117, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28253994

RESUMEN

The creation of a living heart valve is a much-wanted alternative for current valve prostheses that suffer from limited durability and thromboembolic complications. Current strategies to create such valves, however, require the use of cells for in vitro culture, or decellularized human- or animal-derived donor tissue for in situ engineering. Here, we propose and demonstrate proof-of-concept of in situ heart valve tissue engineering using a synthetic approach, in which a cell-free, slow degrading elastomeric valvular implant is populated by endogenous cells to form new valvular tissue inside the heart. We designed a fibrous valvular scaffold, fabricated from a novel supramolecular elastomer, that enables endogenous cells to enter and produce matrix. Orthotopic implantations as pulmonary valve in sheep demonstrated sustained functionality up to 12 months, while the implant was gradually replaced by a layered collagen and elastic matrix in pace with cell-driven polymer resorption. Our results offer new perspectives for endogenous heart valve replacement starting from a readily-available synthetic graft that is compatible with surgical and transcatheter implantation procedures.


Asunto(s)
Implantes Absorbibles , Bioprótesis , Elastómeros/química , Prótesis Valvulares Cardíacas , Válvula Pulmonar/crecimiento & desarrollo , Válvula Pulmonar/cirugía , Animales , Análisis de Falla de Equipo , Femenino , Ensayo de Materiales , Diseño de Prótesis , Implantación de Prótesis , Ovinos , Resultado del Tratamiento
11.
J Biomech ; 49(13): 2778-2784, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27395759

RESUMEN

Patient-specific numerical models could aid the decision-making process for percutaneous valve selection; in order to be fully informative, they should include patient-specific data of both anatomy and mechanics of the implantation site. This information can be derived from routine clinical imaging during the cardiac cycle, but data on the implantation site mechanical response to device expansion are not routinely available. We aim to derive the implantation site response to overexpansion by monitoring pressure/dimensional changes during balloon sizing procedures and by applying a reverse engineering approach using a validated computational balloon model. This study presents the proof of concept for such computational framework tested in-vitro. A finite element (FE) model of a PTS-X405 sizing balloon (NuMed, Inc., USA) was created and validated against bench tests carried out on an ad hoc experimental apparatus: first on the balloon alone to replicate free expansion; second on the inflation of the balloon in a rapid prototyped cylinder with material deemed suitable for replicating pulmonary arteries in order to validate balloon/implantation site interaction algorithm. Finally, the balloon was inflated inside a compliant rapid prototyped patient-specific right ventricular outflow tract to test the validity of the approach. The corresponding FE simulation was set up to iteratively infer the mechanical response of the anatomical model. The test in this simplified condition confirmed the feasibility of the proposed approach and the potential for this methodology to provide patient-specific information on mechanical response of the implantation site when overexpanded, ultimately for more realistic computational simulations in patient-specific settings.


Asunto(s)
Análisis de Elementos Finitos , Corazón/fisiología , Fenómenos Mecánicos , Adolescente , Fenómenos Biomecánicos , Humanos , Masculino , Prótesis e Implantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA