RESUMEN
Cell-based therapies using adipose-derived mesenchymal stromal cells (ADMSCs) have shown promising results for the treatment of osteoarthritis (OA). In fact, ADMSCs are now indicated as one of the most powerful cell sources through their immunomodulatory and anti-inflammatory activities. Recently, an innovative one-step closed device was developed to obtain microfragmented adipose tissue (MF) to avoid the need for good manufacturing practices for ADMSCs expansion while maintaining their regenerative potential. The aim of this study was to assess the mechanisms of action of MF and ADMSCs from MF (MF-ADMSCs) on an inflammatory cell model of OA synoviocytes. We found that MF produced low levels of inflammatory factors such as interleukin 6 (IL-6), CC-chemokine ligand 5/receptor-activated normal T-cell expressed and secreted (CCL5/RANTES), CC-chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1), and CC-chemokine ligand 3/macrophage inflammatory protein-1α (CCL3/MIP-1α), and a higher level only of CXC-chemokine ligand 8/interleukin 8 compared with MF-ADMSCs. Matrix metalloproteinase 9 (MMP-9) degradative factor but released a lower level of its inhibitor tissue inhibitor of the metalloproteinase (TIMP-1). MF in coculture with synoviocytes significantly induced both the metabolic activity and the release of IL-6. In contrast, MF, not MF-ADMSCs, partially decreased CCL5/RANTES. Moreover, MF reduced the release of both macrophage-specific chemokines (CCL2/MCP-1 and CCL3/MIP-1α) and degradative marker MMP-9. Interestingly, MF increased TIMP-1 (the MMP-9 inhibitor) and down-modulated toll-like receptor (TLR4) receptor and key molecules of NFκB pathways. These data evidenced different effects of MF versus MF-ADMSCs on inflamed synoviocytes. MF reduced typical macrophages markers and its potentiality by switching off macrophages activity was strictly dependent on TLR4 and NFκB signaling.
Asunto(s)
Tejido Adiposo/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/patología , Osteoartritis/terapia , Adulto , Anciano , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Femenino , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Macrófagos/inmunología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , FN-kappa B/metabolismo , Sinoviocitos/inmunología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Asunto(s)
Materiales Biocompatibles/farmacología , Reacción a Cuerpo Extraño/prevención & control , Factores Inmunológicos/farmacología , Macrófagos/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Prótesis e Implantes , Inmunidad Adaptativa/efectos de los fármacos , Materiales Biocompatibles/química , Diferenciación Celular/efectos de los fármacos , Reacción a Cuerpo Extraño/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/química , Macrófagos/citología , Macrófagos/inmunología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células TH1/citología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Balance Th1 - Th2/efectos de los fármacos , Células Th2/citología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Andamios del TejidoRESUMEN
BACKGROUND/AIMS: Mesenchymal stromal cells (MSCs) hold considerable promise in bone tissue engineering, but their poor survival and potency when in vivo implanted limits their therapeutic potential. For this reason, the study on culture conditions and cellular signals that can influence the potential therapeutic outcomes of MSCs have received considerable attention in recent years. Cell maintenance under hypoxic conditions, in particular for a short period, is beneficial for MSCs, as low O2 tension is similar to that present in the physiologic niche, however the precise mechanism through which hypoxia preconditioning affects these cells remains unclear. METHODS: In order to explore what happens during the first 48 h of hypoxia preconditioning in human MSCs (hMSCs) from bone marrow, the cells were exposed to 1.5% O2 tension in the X3 Hypoxia Hood and Culture Combo - Xvivo System device. The expression modulation of critical genes which could be good markers of increased osteopotency has been investigated by Western blot, immunufluorescence and ELISA. Luciferase reporter assay and Chromatin immunoprecipitation was used to investigate the regulation of the expression of Collagen type XV (ColXV) gene. RESULTS: We identified ColXV as a new low O2 tension sensitive gene, and provided a novel mechanistic evidence that directly HIF-1α (hypoxia-inducible factor-1 alpha) mediates ColXV expression in response to hypoxia, since it was found specifically in vivo recruited at ColXV promoter, in hypoxia-preconditioned hMSCs. This finding, together the evidence that also Runx2, VEGF and FGF-2 expression increased in hypoxia preconditioned hMSCs, is consistent with the possibility that increased ColXV expression in response to hypoxia is mediated by an early network that supports the osteogenic potential of the cells. CONCLUSION: These results add useful information to understand the role of a still little investigated collagen such as ColXV, and identify ColXV as a marker of successful hypoxia preconditioning. As a whole, our data give further evidence that hypoxia preconditioned hMSCs have greater osteopotency than normal hMSCs, and that the effects of hypoxic regulation of hMSCs activities should be considered before they are clinically applied.
Asunto(s)
Colágeno/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Hipoxia de la Célula , Células Cultivadas , Colágeno/análisis , Colágeno/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/análisis , Células Madre Mesenquimatosas/citología , Regiones Promotoras GenéticasRESUMEN
Purpose/Aim of the study. Collagen type XV (ColXV) was identified, in our previews studies, as a novel component of bone extracellular matrix. The present study aims to investigate ColXV localization during mineralization of osteodifferentiated human mesenchymal stem cells (hMSCs). MATERIAL AND METHODS: hMSCs cultured in osteogenic medium have been analyzed at day 14 and 28 for mineral matrix deposition by alizarin red S staining, ultrastructural analysis and ColXV localization by immunogold electron microscopy. RESULTS: Our data show an intimate association between ColXV and fibrillar components in areas localized far from mineralized nodules. CONCLUSIONS: We have demonstrated the efficacy of ultrastructural analysis, combined with immunocytochemistry, to establish a temporal and spatial localization of ColXV. This data, added to previous evidences, contribute to validate the negative effects of calcium deposits on ColXV expression.
Asunto(s)
Calcificación Fisiológica , Diferenciación Celular , Colágeno/biosíntesis , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Humanos , Células Madre Mesenquimatosas/ultraestructura , Microscopía InmunoelectrónicaRESUMEN
We have previously demonstrated that collagen type XV (ColXV) is a novel bone extracellular matrix (ECM) protein. It is well known that the complex mixture of multiple components present in ECM can help both to maintain stemness or to promote differentiation of stromal cells following change in qualitative characteristics or concentrations. We investigated the possible correlation between ColXV expression and mineral matrix deposition by human mesenchymal stromal cells (hMSCs) with different osteogenic potential and by osteoblasts (hOBs) that are able to grow in culture medium with or without calcium. Analysing the osteogenic process, we have shown that ColXV basal levels are lower in cells less prone to osteo-induction such as hMSCs from Wharton Jelly (hWJMSCs), compared to hMSCs that are prone to osteo-induction such as those from the bone marrow (hBMMSCs). In the group of samples identified as 'mineralized MSCs', during successful osteogenic induction, ColXV protein continued to be detected at substantial levels until early stage of differentiation, but it significantly decreased and then disappeared at the end of culture when the matrix formed was completely calcified. The possibility to grow hOBs in culture medium without calcium corroborated the results obtained with hMSCs demonstrating that calcium deposits organized in a calcified matrix, and not calcium 'per se', negatively affected ColXV expression. As a whole, our data suggest that ColXV may participate in ECM organization in the early-phases of the osteogenic process and that this is a prerequisite to promote the subsequent deposition of mineral matrix.
Asunto(s)
Colágeno/metabolismo , Osteogénesis , Calcificación Fisiológica , Matriz Extracelular/metabolismo , Humanos , Osteoblastos/metabolismoRESUMEN
Mesenchymal stromal cells (MSCs) are key players in the repair or regeneration of the damaged bone tissue. However, heterogeneity exists between MSCs derived from different donors in their bone formation ability both in vitro and in vivo. The identification of markers defining MSCs with different functional phenotypes is fundamental to maximize their clinical potential. In our previous in vivo study, impaired expression in MSCs of cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE), the two key enzymes in the catabolic pathway of homocysteine, was associated to decreased bone formation and to the onset of osteoporosis in mice. Here, we investigated whether osteogenic differentiation of human MSCs (hMSCs) modulates the expression of CBS and CSE. The expression of CBS and CSE was also assessed during chondrogenesis to confirm the specificity of their expression during osteogenesis. hMSCs displayed a heterogeneous mineralizing capacity between donors (70% of the samples mineralized, while 30% did not mineralize). Inducible expression of CBS and CSE was found to be associated with a mineralizing phenotype in hMSCs. In particular, up-regulation of CSE was restricted to hMSCs undergoing mineralization. During chondrogenesis, CBS was significantly up-regulated while CSE expression was not affected. Ex-vivo findings confirmed that mature h-osteoblasts (hOBs) show consistently higher expression of CBS and CSE than hMSCs. Our data provide the first evidence that the expression of CBS and CSE in hMSCs closely correlates with the transition of hMSCs toward the osteoblastic phenotype and that CSE may constitute a novel marker of osteogenic differentiation.
Asunto(s)
Calcificación Fisiológica , Diferenciación Celular , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Células Madre Mesenquimatosas/enzimología , Osteoblastos/enzimología , Osteogénesis , Biomarcadores/metabolismo , Proliferación Celular , Células Cultivadas , Condrogénesis , Humanos , Fenotipo , Factores de TiempoRESUMEN
AIM: Increased age is the most prominent risk factor for the initiation and progression of osteoarthritis (OA). The effects of human growth hormone (hGH) combined or not with hyaluronan amide derivative (HAD) were evaluated on human OA chondrocytes, to define their biological action and potentiality in OA treatment. MATERIAL AND METHODS: Cell viability, metabolic activity, gene expression and factors released were tested at different time points on chondrocytes treated with different concentrations of hGH (0.01-10 µg/ml) alone or in combination with HAD (1 mg/ml). RESULTS: We found that OA chondrocytes express GH receptor and that the different doses of hGH tested did not affect cell viability, metabolic activity or the expression of collagen type 2, 1, or 10 nor did it induce the release of IGF-1 or FGF-2. Conversely, hGH treatment increased the expression of hyaluronan receptor CD44. HAD combined with hGH reduced metabolic activity, IL6 release and gene expression, but not the suppressor of cytokine signaling 2 (SOCS2), which was significantly induced and translocated into the nucleus. The parameters analyzed, independently of the treatments used proportionally decreased with increasing age of the patients. CONCLUSIONS: hGH only induced CD44 receptor on OA chondrocytes but did not affect other parameters, such as chondrocytic gene markers or IGF-1 or FGF-2 release. HAD reduced all the effects induced by hGH partially through a significant induction of SOCS2. These data show that GH or HAD treatment does not influence the response of the OA chondrocytes, thus the modulation of cellular response is age-independent.
Asunto(s)
Envejecimiento , Condrocitos/metabolismo , Hormona de Crecimiento Humana/farmacología , Ácido Hialurónico , Osteoartritis de la Cadera/metabolismo , Anciano , Células Cultivadas , Condrocitos/patología , Femenino , Humanos , Ácido Hialurónico/análogos & derivados , Ácido Hialurónico/farmacología , Masculino , Persona de Mediana Edad , Osteoartritis de la Cadera/patologíaRESUMEN
In clinical orthopedics suitable materials that induce and restore biological functions together with the right mechanical properties are particularly needed for the regeneration of osteochondral lesions. For this purpose, the ideal scaffold should possess the right properties with respect to degradation, cell binding, cellular uptake, non-immunogenicity, mechanical strength, and flexibility. In addition, it should be easy to handle and serve as a template for chondrocyte and bone cells guiding both cartilage and bone formation. The aim of the present study was to estimate the chondrogenic and osteogenic capability of bone marrow concentrated derived cells seeded onto a novel nano-composite biomimetic material. These properties have been evaluated by means of histological, immunohistochemical and electron microscopy analyses. The data obtained demonstrated that freshly harvested cells obtained from bone marrow were able, once seeded onto the biomaterial, to differentiate either down the chondrogenic and osteogenic pathways as evaluated by the expression and production of specific matrix molecules. These findings support the use, for the repair of osteochondral lesions, of this new nano-composite biomimetic material together with bone marrow derived cells in a "one step" transplantation procedure.
Asunto(s)
Materiales Biomiméticos/química , Células de la Médula Ósea/citología , Condrocitos/citología , Nanocompuestos/química , Osteoblastos/citología , Andamios del Tejido , Adulto , Células de la Médula Ósea/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/fisiología , Condrogénesis/fisiología , Femenino , Humanos , Masculino , Ensayo de Materiales , Nanocompuestos/ultraestructura , Osteoblastos/fisiología , Osteogénesis/fisiologíaAsunto(s)
Artritis Juvenil , Interleucina-10/sangre , Interleucina-4/sangre , Artropatías , Humanos , Artropatías/congénitoRESUMEN
Hydrogen sulfide (H2S), which recently emerged as a potent regulator of tissues and organs, is broadly produced in mammalian cells but whether it can regulate bone cell function is still elusive. The main objective of this study was to establish the role of H2S in the regulation of human osteoclast differentiation and function. Sodium hydrosulfide (NaHS), a common H2S-donor, was administered in vitro to CD11b+ human monocytes, the pool of circulating osteoclasts precursors which are critically involved in osteoclast development and function in bone. NaHS dose-dependently decreased human osteoclast differentiation at concentrations which did not induce toxicity. The inhibition of human osteoclast differentiation was associated with a down-regulation in RANKL-dependent intracellular ROS levels in human pre-osteoclasts cells. Furthermore, NaHS up-regulated NRF2 protein expression, its nuclear translocation, and the transcription of the two key downstream antioxidant genes Peroxiredoxin-1 and NAD(P)H dehydrogenase quinone 1, suggesting that NRF2 activation may inhibit human osteoclast differentiation by activating a sustained antioxidant response in osteoclast progenitors; furthermore, NRF2 activators Sulforaphane and Tert-butylhydroquinone inhibited in vitro human osteoclast differentiation. Moreover, silencing NRF2 in human pre-osteoclasts totally abolished NaHS-mediated inhibition of osteoclastogenesis, suggesting that NRF2 is essential to the inhibitory function of NaHS in osteoclast development. Finally, we found that NaHS also downregulated the RANKL/OPG mRNA ratio in human mesenchymal stem cells, the key osteoclast-supporting cells. Our results suggest that NaHS shows a potential therapeutical role in erosive diseases of bone by regulating both direct and indirect mechanisms controlling the differentiation of circulating osteoclasts precursors.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Osteoclastos/efectos de los fármacos , Ligando RANK/metabolismo , Células Madre/efectos de los fármacos , Sulfuros/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas , Monocitos/citología , Osteoclastos/citología , Especies Reactivas de Oxígeno/metabolismo , Células Madre/citología , Células Madre/metabolismoRESUMEN
OBJECTIVE: To examine the effect of different sources of good manufacturing practice clinical grade adipose-derived mesenchymal stem cells (AD-MSCs) on inflammatory factors in osteoarthritic (OA) chondrocytes and synoviocytes. METHODS: AD-MSCs from infrapatellar Hoffa fat, subcutaneous (SC) hip fat, and SC abdominal fat were cocultured in Transwells with chondrocytes or synoviocytes. Inflammatory factors (interleukin-1ß [IL-1ß], tumor necrosis factor α, IL-6, CXCL1/growth-related oncogene α, CXCL8/IL-8, CCL2/monocyte chemotactic protein 1, CCL3/macrophage inflammatory protein 1α, and CCL5/RANTES) were evaluated by quantitative reverse transcription-polymerase chain reaction or multiplex bead-based immunoassay. The role of different immunomodulators was analyzed. RESULTS: All the inflammatory factors analyzed were down-modulated at the messenger RNA or protein level independently by all 3 AD-MSC sources or by allogeneic AD-MSCs used in coculture with chondrocytes or synoviocytes. Inflammatory factor down-modulation was observed only when AD-MSCs were cocultured with chondrocytes or synoviocytes that produced high levels of inflammatory factors, but no effect was observed in cells that produced low levels of those factors, thus highlighting a dependence of the AD-MSC effect on existing inflammation. The immunomodulators IL-10, IL-1 receptor antagonist, fibroblast growth factor 2, indoleamine 2,3-dioxygenase 1, and galectin 1 were not involved in AD-MSC effects, whereas the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2 ) pathway exerted a role in the mechanism of antiinflammatory AD-MSC action. CONCLUSION: The antiinflammatory effects of AD-MSCs are probably not dependent on AD-MSC adipose tissue sources and donors but rather on the inflammatory status of OA chondrocytes and synoviocytes. AD-MSCs seem to be able to sense and respond to the local environment. Even though a combination of different molecules may be involved in AD-MSC effects, the COX-2/PGE2 pathway may play a role, suggesting that AD-MSCs may be useful for therapies in osteoarticular diseases.
Asunto(s)
Adipocitos/citología , Condrocitos/citología , Dinoprostona/metabolismo , Células Madre Mesenquimatosas/citología , Osteoartritis/patología , Membrana Sinovial/citología , Anciano , Biomarcadores/metabolismo , Cartílago Articular/patología , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Condrocitos/metabolismo , Técnicas de Cocultivo , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Membrana Sinovial/metabolismoRESUMEN
The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering. Here we focused on the decellularized matrix obtained from human umbilical cord Wharton's jelly (DWJ) which retains several structural and bioactive molecules very similar to those of the IVD ECM. However, being a viscous gel, DWJ has limited ability to retain ordered structural features when considered as architecture scaffold. To overcome this limitation, we produced DWJ-based multifunctional hydrogels, in the form of 3D millicylinders containing different percentages of alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, which may impart mechanical integrity to the biologically active DWJ. The developed protocol, based on a freezing step, leads to the consolidation of the entire polymeric dispersion mixture, followed by an ionic gelation step and a freeze-drying process. Finally, a porous, stable, easily storable, and suitable matrix for ex vivo experiments was obtained. The properties of the millicylinders (Wharton's jelly millicylinders [WJMs]) were then tested in culture of degenerated IVD cells isolated from disc tissues of patients undergoing surgical discectomy. We found that WJMs with the highest percentage of DWJ were effective in supporting cell migration, restoration of the IVD phenotype (increased expression of Collagen type 2, aggrecan, Sox9 and FOXO3a), anti-inflammatory action, and stem cell activity of resident progenitor/notochordal cells (increased number of CD24 positive cells). We are confident that the DWJ-based formulations proposed here can provide adequate stimuli to the cells present in the degenerated IVD to restart the anabolic machinery.
Asunto(s)
Hidrogeles , Disco Intervertebral , Regeneración , Gelatina de Wharton , Humanos , Gelatina de Wharton/citología , Hidrogeles/química , Hidrogeles/farmacología , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/patología , Andamios del Tejido/química , Células CultivadasRESUMEN
While conventional radiography and MRI have a well-established role in the assessment of patients with knee osteoarthritis, ultrasound is considered a complementary and additional tool. Moreover, the actual usefulness of ultrasound is still a matter of debate in knee osteoarthritis assessment. Despite that, ultrasound offers several advantages and interesting aspects for both current clinical practice and future perspectives. Ultrasound is potentially a helpful tool in the detection of anomalies such as cartilage degradation, osteophytes, and synovitis in cases of knee osteoarthritis. Furthermore, local diagnostic and minimally invasive therapeutic operations pertaining to knee osteoarthritis can be safely guided by real-time ultrasound imaging. We are constantly observing a growing knowledge and awareness among radiologists and other physicians, concerning ultrasound imaging. Ultrasound studies can be extremely useful to track the response to various therapies. For this specific aim, tele-ultrasonography may constitute an easy tool aiding precise and repeated follow-up controls. Moreover, raw radio-frequency data from US backscattering signals contain more information than B-mode imaging. This paves the way for quantitative in-depth analyses of cartilage, bone, and other articular structures. Overall, ultrasound technologies and their rapid evolution have the potential to make a difference at both the research and clinical levels. This narrative review article describes the potential of such technologies and their possible future implications.
RESUMEN
Advanced tools for the in situ treatment of articular cartilage lesions are attracting a growing interest in both surgery and bioengineering communities. The interest is particularly high concerning the delivery of cell-laden hydrogels. The tools currently available in the state-of-the-art hardly find an effective compromise between treatment accuracy and invasiveness. This paper presents a novel arthroscopic device provided with a bendable tip for the controlled extrusion of cell-laden hydrogels. The device consists of a handheld extruder and a supply unit that allows the extrusion of hydrogels. The extruder is equipped with a disposable, bendable nitinol tip (diameter: 4 mm, length: 92 mm, maximum bending angle: 90°) that guarantees access to hard-to-reach areas of the joint, which are difficult to get to, with conventional arthroscopic instruments. The tip accommodates a biocompatible polymer tube that is directly connected to the cartridge containing the hydrogel, whose plunger is actuated by a volumetric or pneumatic supply unit (both tested, in this study). Three different chondrocyte-laden hydrogels (RGD-modified Vitrogel®, methacrylated gellan gum, and an alginate-gelatine blend) were considered. First, the performance of the device in terms of resolution in hydrogel delivery was assessed, finding values in the range between 4 and 102 µL, with better performance found for the pneumatic supply unit and no significant differences between straight tip and bent tip conditions. Finite element simulations suggested that the shear stresses and pressure levels generated during the extrusion process were compatible with a safe deposition of the hydrogels. Biological analyses confirmed a high chondrocyte viability over a 7-day period after the extrusion of the three cell-laden hydrogel types, with no differences between the two supply units. The arthroscopic device was finally tested ex vivo by nine orthopedic surgeons on human cadaver knees. The device allowed surgeons to easily deliver hydrogels even in hard-to-reach cartilage areas. The outcomes of a questionnaire completed by the surgeons demonstrated a high usability of the device, with an overall preference for the pneumatic supply unit. Our findings provide evidence supporting the future arthroscopic device translation in pre-clinical and clinical scenarios, dealing with osteoarticular treatments.
Asunto(s)
Artroscopía , Cartílago Articular , Condrocitos , Hidrogeles , Hidrogeles/química , Artroscopía/métodos , Cartílago Articular/cirugía , Humanos , Animales , Diseño de EquipoRESUMEN
Ewing sarcoma (EWS) is the second most common pediatric bone tumor. The EWS tumor microenvironment is largely recognized as immune-cold, with macrophages being the most abundant immune cells and their presence associated with worse patient prognosis. Expression of CD99 is a hallmark of EWS cells, and its targeting induces inhibition of EWS tumor growth through a poorly understood mechanism. In this study, we analyzed CD99 expression and functions on macrophages and investigated whether the concomitant targeting of CD99 on both tumor and macrophages could explain the inhibitory effect of this approach against EWS. Targeting CD99 on EWS cells downregulated expression of the "don't eat-me" CD47 molecule but increased levels of the "eat-me" phosphatidyl serine and calreticulin molecules on the outer leaflet of the tumor cell membrane, triggering phagocytosis and digestion of EWS cells by macrophages. In addition, CD99 ligation induced reprogramming of undifferentiated M0 macrophages and M2-like macrophages toward the inflammatory M1-like phenotype. These events resulted in the inhibition of EWS tumor growth. Thus, this study reveals what we believe to be a previously unrecognized function of CD99, which engenders a virtuous circle that delivers intrinsic cell death signals to EWS cells, favors tumor cell phagocytosis by macrophages, and promotes the expression of various molecules and cytokines, which are pro-inflammatory and usually associated with tumor regression. This raises the possibility that CD99 may be involved in boosting the antitumor activity of macrophages.
Asunto(s)
Neoplasias Óseas , Sarcoma de Ewing , Humanos , Niño , Sarcoma de Ewing/genética , Muerte Celular , Línea Celular Tumoral , Macrófagos/metabolismo , Microambiente Tumoral , Antígeno 12E7RESUMEN
The use of piezoelectric nanomaterials combined with ultrasound stimulation is emerging as a promising approach for wirelessly triggering the regeneration of different tissue types. However, it has never been explored for boosting chondrogenesis. Furthermore, the ultrasound stimulation parameters used are often not adequately controlled. In this study, we show that adipose-tissue-derived mesenchymal stromal cells embedded in a nanocomposite hydrogel containing piezoelectric barium titanate nanoparticles and graphene oxide nanoflakes and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every 2 days for 10 days) dramatically boost chondrogenic cell commitment in vitro. Moreover, fibrotic and catabolic factors are strongly down-modulated: proteomic analyses reveal that such stimulation influences biological processes involved in cytoskeleton and extracellular matrix organization, collagen fibril organization, and metabolic processes. The optimal stimulation regimen also has a considerable anti-inflammatory effect and keeps its ability to boost chondrogenesis in vitro, even in an inflammatory milieu. An analytical model to predict the voltage generated by piezoelectric nanoparticles invested by ultrasound waves is proposed, together with a computational tool that takes into consideration nanoparticle clustering within the cell vacuoles and predicts the electric field streamline distribution in the cell cytoplasm. The proposed nanocomposite hydrogel shows good injectability and adhesion to the cartilage tissue ex vivo, as well as excellent biocompatibility in vivo, according to ISO 10993. Future perspectives will involve preclinical testing of this paradigm for cartilage regeneration.
Asunto(s)
Condrogénesis , Proteómica , Nanogeles , Hidrogeles/farmacología , Diferenciación Celular , Ingeniería de TejidosRESUMEN
Articular cartilage defects and degenerative diseases are pathological conditions that cause pain and the progressive loss of joint functionalities. The most severe cases are treated through partial or complete joint replacement with prostheses, even if the interest in cartilage regeneration and re-growth methods is steadily increasing. These methods consist of the targeted deposition of biomaterials. Only a few tools have been developed so far for performing these procedures in a minimally invasive way. This work presents an innovative device for the direct deposition of multiple biomaterials in an arthroscopic scenario. The tool is easily handleable and allows the extrusion of three different materials simultaneously. It is also equipped with a flexible tip to reach remote areas of the damaged cartilage. Three channels are arranged coaxially and a spring-based dip-coating approach allows the fabrication and assembly of a bendable polymeric tip. Experimental tests were performed to characterize the tip, showing the ability to bend it up to 90° (using a force of ~ 1.5 N) and to extrude three coaxial biomaterials at the same time with both tip straight and tip fully bent. Rheometric analysis and fluid-dynamic computational simulations were performed to analyze the fluids' behavior; the maximum shear stresses were observed in correspondence to the distal tip and the channel convergence chamber, but with values up to ~ 1.2 kPa, compatible with a safe extrusion of biomaterials, even laden with cells. The cells viability was assessed after the extrusion with Live/Dead assay, confirming the safety of the extrusion procedures. Finally, the tool was tested arthroscopically in a cadaveric knee, demonstrating its ability to deliver the biomaterial in different areas, even ones that are typically hard-to-reach with traditional tools.
Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Articulación de la Rodilla/cirugía , Artroscopía , Cartílago Articular/cirugía , Cartílago Articular/patología , Supervivencia Celular , Materiales Biocompatibles , Osteoartritis de la Rodilla/patologíaRESUMEN
COL2A1 gene encodes the alpha-1 chain of type-II procollagen. Heterozygous pathogenic variants are associated with the broad clinical spectrum of genetic diseases known as type-II collagenopathies. We aimed to characterize the NM_001844.5:c.1330G>A;p.Gly444Ser variant detected in the COL2A1 gene through trio-based prenatal exome sequencing in a fetus presenting a severe skeletal phenotype at 31 Gestational Weeks and in his previously undisclosed mild-affected father. Functional studies on father's cutaneous fibroblasts, along with in silico protein modeling and in vitro chondrocytes differentiation, showed intracellular accumulation of collagen-II, its localization in external Golgi vesicles and nuclear morphological alterations. Extracellular matrix showed a disorganized fibronectin network. These results showed that p.Gly444Ser variant alters procollagen molecules processing and the assembly of mature type-II collagen fibrils, according to COL2A1-chain disorganization, displayed by protein modeling. Clinical assessment at 38 y.o., through a reverse-phenotyping approach, revealed limp gait, short and stocky appearance. X-Ray and MRI showed pelvis asymmetry with severe morpho-structural alterations of the femoral heads bilaterally, consistent with a mild form of type-II collagenopathy. This study shows how the fusion of genomics and clinical expertise can drive a diagnosis supported by cellular and bioinformatics studies to effectively establish variants pathogenicity.
RESUMEN
Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.
Asunto(s)
Lipodistrofia Parcial Familiar , Humanos , Adipocitos Marrones/metabolismo , Lamina Tipo A/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacología , Receptores de Mineralocorticoides/metabolismo , Células HEK293 , Tejido Adiposo Pardo/metabolismoRESUMEN
The pathways that control mesenchymal stem cells (MSCs) differentiation are not well understood, and although some of the involved transcription factors (TFs) have been characterized, the role of others remains unclear. We used human MSCs from tibial plateau (TP) trabecular bone, iliac crest (IC) bone marrow and Wharton's jelly (WJ) umbilical cord demonstrating a variability in their mineral matrix deposition, and in the expression levels of TFs including Runx2, Sox9, Sox5, Sox6, STAT1 and Slug, all involved in the control of osteochondroprogenitors differentiation program. Because we reasoned that the basal expression level of some TFs with crucial role in the control of MSC fate may be correlated with osteogenic potential, we considered the possibility to affect the hMSCs behaviour by using gene silencing approach without exposing cells to induction media. In this study we found that Slug-silenced cells changed in morphology, decreased in their migration ability, increased Sox9 and Sox5 and decreased Sox6 and STAT1 expression. On the contrary, the effect of Slug depletion on Runx2 was influenced by cell type. Interestingly, we demonstrated a direct in vivo regulatory action of Slug by chromatin immunoprecipitation, showing a specific recruitment of this TF in the promoter of Runx2 and Sox9 genes. As a whole, our findings have important potential implication on bone tissue engineering applications, reinforcing the concept that manipulation of specific TF expression levels may elucidate MSC biology and the molecular mechanisms, which promote osteogenic differentiation.