Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunogenetics ; 68(4): 295-312, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26801775

RESUMEN

Bony fish encode multiple multi-gene families of membrane receptors that are comprised of immunoglobulin (Ig) domains and are predicted to function in innate immunity. One of these families, the diverse immunoglobulin (Ig) domain-containing protein (DICP) genes, maps to three chromosomal loci in zebrafish. Most DICPs possess one or two Ig ectodomains and include membrane-bound and secreted forms. Membrane-bound DICPs include putative inhibitory and activating receptors. Recombinant DICP Ig domains bind lipids with varying specificity, a characteristic shared with mammalian CD300 and TREM family members. Numerous DICP transcripts amplified from different lines of zebrafish did not match the zebrafish reference genome sequence suggesting polymorphic and haplotypic variation. The expression of DICPs in three different lines of zebrafish has been characterized employing PCR-based strategies. Certain DICPs exhibit restricted expression in adult tissues whereas others are expressed ubiquitously. Transcripts of a subset of DICPs can be detected during embryonic development suggesting roles in embryonic immunity or other developmental processes. Transcripts representing 11 previously uncharacterized DICP sequences were identified. The assignment of two of these sequences to an unplaced genomic scaffold resulted in the identification of an alternative DICP haplotype that is linked to a MHC class I Z lineage haplotype on zebrafish chromosome 3. The linkage of DICP and MHC class I genes also is observable in the genomes of the related grass carp (Ctenopharyngodon idellus) and common carp (Cyprinus carpio) suggesting that this is a shared character with the last common Cyprinidae ancestor.


Asunto(s)
Genes MHC Clase I/genética , Inmunoglobulinas/genética , Receptores Inmunológicos/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Genes MHC Clase I/inmunología , Ligamiento Genético , Haplotipos , Inmunidad Innata , Lípidos/genética , Receptores Inmunológicos/inmunología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/inmunología , Proteínas de Pez Cebra/inmunología
2.
Immunogenetics ; 66(4): 267-79, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24469064

RESUMEN

The polymeric immunoglobulin (Ig) receptor (pIgR) is an integral transmembrane glycoprotein that plays an important role in the mammalian immune response by transporting soluble polymeric Igs across mucosal epithelial cells. Single pIgR genes, which are expressed in lymphoid organs including mucosal tissues, have been identified in several teleost species. A single pigr gene has been identified on zebrafish chromosome 2 along with a large multigene family consisting of 29 pigr-like (PIGRL) genes. Full-length transcripts from ten different PIGRL genes that encode secreted and putative inhibitory membrane-bound receptors have been characterized. Although PIGRL and pigr transcripts are detected in immune tissues, only PIGRL transcripts can be detected in lymphoid and myeloid cells. In contrast to pIgR which binds Igs, certain PIGRL proteins bind phospholipids. PIGRL transcript levels are increased after infection with Streptococcus iniae, suggesting a role for PIGRL genes during bacterial challenge. Transcript levels of PIGRL genes are decreased after infection with Snakehead rhabdovirus, suggesting that viral infection may suppress PIGRL function.


Asunto(s)
Receptores de Inmunoglobulina Polimérica/genética , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología , Pez Cebra/genética , Pez Cebra/inmunología , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Secuencia Conservada , Evolución Molecular , Peces/genética , Peces/inmunología , Expresión Génica , Humanos , Inmunidad Innata/genética , Ligandos , Mamíferos/genética , Mamíferos/inmunología , Datos de Secuencia Molecular , Familia de Multigenes , Fosfolípidos/metabolismo , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Inmunoglobulina Polimérica/química , Infecciones por Rhabdoviridae/genética , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Homología de Secuencia de Aminoácido , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
Semin Immunol ; 22(1): 17-24, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20004115

RESUMEN

Characterization of immune receptors found in phylogenetically disparate species at the genetic, structural and functional levels has provided unique insight into the evolutionary acquisition of immune function. The roles of variable- and intermediate-type immunoglobulin (Ig) domains in direct recognition of ligands and other functions are far wider than previously anticipated. Common mechanisms of multigene family diversification and expansion as well as unique adaptations that relate to function continue to provide unique insight into the numerous patterns, processes and complex interactions that regulate the host response to infectious challenge.


Asunto(s)
Especificidad de Anticuerpos , Inmunoglobulinas/inmunología , Inmunidad Adaptativa , Animales , Evolución Molecular , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/genética , Familia de Multigenes , Receptores Inmunológicos/inmunología
4.
Genomics ; 99(5): 282-91, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22386706

RESUMEN

A heretofore-unrecognized multigene family encoding diverse immunoglobulin (Ig) domain-containing proteins (DICPs) was identified in the zebrafish genome. Twenty-nine distinct loci mapping to three chromosomal regions encode receptor-type structures possessing two classes of Ig ectodomains (D1 and D2). The sequence and number of Ig domains, transmembrane regions and signaling motifs vary between DICPs. Interindividual polymorphism and alternative RNA processing contribute to DICP diversity. Molecular models indicate that most D1 domains are of the variable (V) type; D2 domains are Ig-like. Sequence differences between D1 domains are concentrated in hypervariable regions on the front sheet strands of the Ig fold. Recombinant DICP Ig domains bind lipids, a property shared by mammalian CD300 and TREM family members. These findings suggest that novel multigene families encoding diversified immune receptors have arisen in different vertebrate lineages and affect parallel patterns of ligand recognition that potentially impact species-specific advantages.


Asunto(s)
Genómica/métodos , Familia de Multigenes/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Mapeo Cromosómico , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Variación Genética , Inmunoglobulinas/química , Inmunoglobulinas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Fosfolípidos/química , Fosfolípidos/metabolismo , Filogenia , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
5.
Immunogenetics ; 62(9): 623-31, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20652563

RESUMEN

Innate immune gene repertoires are restricted primarily to germline variation. Adaptive immunity, by comparison, relies on somatic variation of germline-encoded genes to generate extraordinarily large numbers of non-heritable antigen recognition motifs. Invertebrates lack the key features of vertebrate adaptive immunity, but have evolved a variety of alternative mechanisms to successfully protect the integrity of "self"; in many cases, these appear to be taxon-specific innovations. In the protochordate Branchiostoma floridae (amphioxus), the variable region-containing chitin-binding proteins (VCBPs) constitute a multigene family (comprised of VCBPs 1-5), which possesses features that are consistent with innate immune-type function. A large number of VCBP alleles and haplotypes are shown to exhibit levels of polymorphism exceeding the elevated overall levels determined for the whole amphioxus genome (JGI). VCBP genes of the 2 and 5 types are distinguished further by a highly polymorphic segment (exon 2) in the N-terminal immunoglobulin domain, defined previously as a "hypervariable region" or a "hotspot." Genomic deoxyribonucleic acid (DNA) and complementary DNA (cDNA) sequences from large numbers of animals representing different populations reveal further significant differences in sequence complexity within and across VCBP2/5 haplotypes that arise through overlapping mechanisms of genetic exchange, gene copy number variation as well as mutation and give rise to distinct allelic lineages. The collective observations suggest that mechanisms were in place at the time of divergence of the cephalochordates that could selectively hyperdiversify immune-type receptors within a multigene family.


Asunto(s)
Quitina/metabolismo , Cordados no Vertebrados/genética , Genoma , Haplotipos/genética , Región Variable de Inmunoglobulina/genética , Polimorfismo Genético/genética , Receptores Inmunológicos/genética , Secuencia de Aminoácidos , Animales , ADN Complementario/genética , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
6.
BMC Genet ; 9: 78, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19046437

RESUMEN

BACKGROUND: The variable region-containing chitin-binding proteins (VCBPs) are found in protochordates and consist of two tandem immunoglobulin variable (V)-type domains and a chitin-binding domain. We previously have shown that these polymorphic genes, which primarily are expressed in the gut, exhibit characteristics of immune genes. In this report, we describe VCBP genomic organization and characterize adjacent and intervening genetic features which may influence both their polymorphism and complex transcriptional repertoire. RESULTS: VCBP genes 1, 2, 4, and 5 are encoded in a single contiguous gene-rich chromosomal region and VCBP3 is encoded in a separate locus. The VCBPs exhibit extensive haplotype variation, including copy number variation (CNV), indel polymorphism and a markedly elevated variation in repeat type and density. In at least one haplotype, inverted repeats occur more frequently than elsewhere in the genome. Multi-animal cDNA screening, as well as transcriptional profilingusing a novel transfection system, suggests that haplotype-specific transcriptional variants may contribute to VCBP genetic diversity. CONCLUSION: The availability of the Branchiostoma floridae genome (Joint Genome Institute, Brafl1), along with BAC and PAC screening and sequencing described here, reveal that the relatively limited number of VCBP genes present in the amphioxus genome exhibit exceptionally high haplotype variation. These VCBP haplotypes contribute a diverse pool of allelic variants, which includes gene copy number variation, pseudogenes, and other polymorphisms, while contributing secondary effects on gene transcription as well.


Asunto(s)
Proteínas Portadoras/genética , Quitina/metabolismo , Cordados no Vertebrados/genética , Genoma , Región Variable de Inmunoglobulina/genética , Animales , Cromosomas Artificiales Bacterianos , Dosificación de Gen , Variación Genética , Haplotipos , Modelos Genéticos , Polimorfismo Genético , Transcripción Genética
7.
Nat Genet ; 48(4): 427-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950095

RESUMEN

To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.


Asunto(s)
Peces/genética , Animales , Evolución Molecular , Femenino , Peces/metabolismo , Genoma , Humanos , Cariotipo , Modelos Genéticos , Especificidad de Órganos , Análisis de Secuencia de ADN , Transcriptoma
9.
Immunogenetics ; 60(5): 257-65, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18330557

RESUMEN

Novel immune-type receptors (NITRs) are immunoglobulin-variable (V) domain-containing cell surface proteins that possess characteristic activating/inhibitory signaling motifs and are expressed in hematopoietic cells. NITRs are encoded by multigene families and have been identified in bony fish species. A single gene cluster, which encodes 36 NITRs that can be classified into 12 families, has been mapped to zebrafish chromosome 7. We report herein the presence of a second NITR gene cluster on zebrafish chromosome 14, which is comprised of three genes (nitr13, nitr14a, and nitr14b) representing two additional NITR gene families. Phylogenetic analyses indicate that the V domains encoded by the nitr13 and nitr14 genes are more similar to each other than any other zebrafish NITR suggesting that these genes arose from a tandem gene duplication event. Similar analyses comparing zebrafish Nitr13 and Nitr14 to NITRs from other fish species indicate that the nitr13 and nitr14 genes are phylogenetically related to the catfish IpNITR13 and IpNITR15 genes. Sequence features of the chromosomal region encoding nitr13 suggest that this gene arose via retrotransposition.


Asunto(s)
Familia de Multigenes , Receptores Inmunológicos/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Duplicación de Gen , Datos de Secuencia Molecular , Filogenia , Receptores Inmunológicos/metabolismo , Proteínas de Pez Cebra/metabolismo
10.
Immunogenetics ; 58(5-6): 362-73, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16738934

RESUMEN

Multigene families of activating/inhibitory receptors belonging to the immunoglobulin superfamily (IgSF) regulate immunological and other cell-cell interactions. A new family of such genes, termed modular domain immune-type receptors (MDIRs), has been identified in the clearnose skate (Raja eglanteria), a phylogenetically ancient vertebrate. At least five different major forms of predicted MDIR proteins are comprised of four different subfamilies of IgSF ectodomains of the intermediate (I)- or C2-set. The predicted number of individual IgSF ectodomains in MDIRs varies from one to six. MDIR1 contains a positively charged transmembrane residue and MDIR2 and MDIR3 each possesses at least one immunoreceptor tyrosine-based inhibitory motif in their cytoplasmic regions. MDIR4 and MDIR5 lack characteristic activating/inhibitory signalling motifs. MDIRs are encoded in a particularly large and complex multigene family. MDIR domains exhibit distant sequence similarity to mammalian CMRF-35-like molecules, polymeric immunoglobulin receptors, triggering receptors expressed on myeloid cells (TREMs), TREM-like transcripts, NKp44 and FcR homologs, as well as to sequences identified in several different vertebrate genomes. Phylogenetic analyses suggest that MDIRs are representative members of an extended family of IgSF genes that diverged before or very early in evolution of the vertebrates and subsequently came to occupy multiple, fully independent distributions in the present day.


Asunto(s)
Inmunoglobulinas/inmunología , Familia de Multigenes/genética , Receptores Inmunológicos/clasificación , Receptores Inmunológicos/genética , Rajidae/inmunología , Secuencia de Aminoácidos , Animales , Evolución Molecular , Variación Genética , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Rajidae/genética
11.
Eur J Immunol ; 34(9): 2551-8, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15307187

RESUMEN

Humoral immunity is effected through the rearrangement of immunoglobulin (Ig) genes in individual somatic cells committed to the B lymphocyte lineage. Haplotype or allelic exclusion restricts B lymphocytes to the expression of a single Ig receptor that can sustain further somatic modification. In most species, a specific Ig chain is encoded at a single genetic locus. However, in cartilaginous fish, hundreds of independent Ig heavy- (IgH) and Ig light-chain (IgL) gene loci are present, many of which are joined in the germ line. Ig gene transcripts have been amplified from single peripheral blood lymphocytes isolated from the clearnose skate (Raja eglanteria) using reverse-transcription PCR, and a single productive IgH transcript was detected in the majority of cells analyzed. Similarly, only a single IgL transcript was detected in over half of the individual cells. Taken together, these findings suggest that a mechanism for haplotype exclusion arose early in the evolution of antibody diversity and is independent of a single genetic locus.


Asunto(s)
Mapeo Cromosómico , Genes de Inmunoglobulinas , Rajidae/inmunología , Secuencia de Aminoácidos , Animales , Reordenamiento Génico , Haplotipos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/genética , Inmunoglobulina M/genética , Datos de Secuencia Molecular
12.
Proc Natl Acad Sci U S A ; 101(44): 15706-11, 2004 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-15496470

RESUMEN

The novel immune-type receptor (NITR) genes encode a unique multigene family of leukocyte regulatory receptors, which possess an extracellular Ig variable (V) domain and may function in innate immunity. Artificial chromosomes that encode zebrafish NITRs have been assembled into a contig spanning approximately 350 kb. Resolution of the complete NITR gene cluster has led to the identification of eight previously undescribed families of NITRs and has revealed the presence of C-type lectins within the locus. A maximum haplotype of 36 NITR genes (138 gene sequences in total) can be grouped into 12 distinct families, including inhibitory and activating receptors. An extreme level of interindividual heterozygosity is reflected in allelic polymorphisms, haplotype variation, and family-specific isoform complexity. In addition, the exceptional diversity of NITR sequences among species suggests divergent evolution of this multigene family with a birth-and-death process of member genes. High-confidence modeling of Nitr V-domain structures reveals a significant shift in the spatial orientation of the Ig fold, in the region of highest interfamily variation, compared with Ig V domains. These studies resolve a complete immune gene cluster in zebrafish and indicate that the NITRs represent the most complex family of activating/inhibitory surface receptors thus far described.


Asunto(s)
Receptores Inmunológicos/genética , Pez Cebra/genética , Pez Cebra/inmunología , Alelos , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , ADN Complementario/genética , Evolución Molecular , Variación Genética , Lectinas Tipo C/química , Lectinas Tipo C/genética , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Estructura Terciaria de Proteína , Receptores Inmunológicos/química , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA