RESUMEN
STING (stimulator of interferon genes) exerts protective cellular responses to viral infection via induction of interferon production and autophagy. Here, we report the role of STING in modulating the immune responses toward fungal infection. Upon Candida albicans stimulation, STING transited alongside the endoplasmic reticulum (ER) to the phagosomes. In phagosomes, STING directly bound with Src via the N-terminal 18 amino acids of STING, and this binding prevented Src from recruiting and phosphorylating Syk. Consistently, Syk-associated signaling and production of pro-inflammatory cytokines and chemokines were increased in mouse BMDCs (bone-marrow-derived dendritic cells) lacking STING with fungal treatment. STING deficiency improved anti-fungal immunity in systemic C. albicans infection. Importantly, administration of the N-terminal 18-aa (amino acid) peptide of STING improved host outcomes in disseminated fungal infection. Overall, our study identifies a previously unrecognized function of STING in negatively regulating anti-fungal immune responses and offers a potential therapeutic strategy for controlling C. albicans infection.
Asunto(s)
Nucleótidos , Transducción de Señal , Animales , Ratones , Citocinas/metabolismo , Inmunidad Innata , Interferones/metabolismo , Nucleótidos/metabolismo , Fagosomas/metabolismo , Fagosomas/microbiologíaRESUMEN
The signaling adaptor MAVS forms prion-like aggregates to activate an innate antiviral immune response after viral infection. However, the molecular mechanisms that regulate MAVS aggregation are poorly understood. Here we identified TRIM31, an E3 ubiquitin ligase of the TRIM family of proteins, as a regulator of MAVS aggregation. TRIM31 was recruited to mitochondria after viral infection and specifically regulated antiviral signaling mediated by RLR pattern-recognition receptors. TRIM31-deficient mice were more susceptible to infection with RNA virus than were wild-type mice. TRIM31 interacted with MAVS and catalyzed the Lys63 (K63)-linked polyubiquitination of Lys10, Lys311 and Lys461 on MAVS. This modification promoted the formation of prion-like aggregates of MAVS after viral infection. Our findings reveal new insights in the molecular regulation of MAVS aggregation and the cellular antiviral response through TRIM31-mediated K63-linked polyubiquitination of MAVS.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Macrófagos/fisiología , Proteínas Nucleares/metabolismo , Priones/inmunología , Virosis/inmunología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Inmunidad Innata/genética , Lisina/genética , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Agregación de Receptores/genética , Transducción de Señal/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación/genéticaRESUMEN
TBK1 is essential for interferon-ß (IFN-ß) production and innate antiviral immunity. Here we identified the T cell anergy-related E3 ubiquitin ligase RNF128 as a positive regulator of TBK1 activation. RNF128 directly interacted with TBK1 through its protease-associated (PA) domain and catalyzed the K63-linked polyubiquitination of TBK1, which led to TBK1 activation, IRF3 activation and IFN-ß production. Deficiency of RNF128 expression attenuated IRF3 activation, IFN-ß production and innate antiviral immune responses to RNA and DNA viruses, in vitro and in vivo. Our study identified RNF128 as an E3 ligase for K63-linked ubiquitination and activation of TBK1 and delineated a previously unrecognized function for RNF128.
Asunto(s)
Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Macrófagos Peritoneales/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Estomatitis Vesicular/inmunología , Vesiculovirus/inmunología , Animales , Femenino , Células HEK293 , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Macrófagos Peritoneales/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
Fungal infections have emerged as a major concern among immunocompromised patients, causing approximately 2 million deaths each year worldwide. However, the regulatory mechanisms underlying antifungal immunity remain elusive and require further investigation. The E3 ligase Trim26 belongs to the tripartite motif (Trim) protein family, which is involved in various biological processes, including cell proliferation, antiviral innate immunity, and inflammatory responses. Herein, we report that Trim26 exerts protective antifungal immune functions after fungal infection. Trim26-deficient mice are more susceptible to fungemia than their wild-type counterparts. Mechanistically, Trim26 restricts inflammatory neutrophils infiltration and limits proinflammatory cytokine production, which can attenuate kidney fungal load and renal damage during Candida infection. Trim26-deficient neutrophils showed higher proinflammatory cytokine expression and impaired fungicidal activity. We further demonstrated that excessive neutrophils infiltration in the kidney was because of the increased production of chemokines CXCL1 and CXCL2, which are mainly synthesized in the macrophages or dendritic cells of Trim26-deficient mice after Candida albicans infections. Together, our study findings unraveled the vital role of Trim26 in regulating antifungal immunity through the regulation of inflammatory neutrophils infiltration and proinflammatory cytokine and chemokine expression during candidiasis.
Asunto(s)
Candidiasis , Neutrófilos , Animales , Ratones , Antifúngicos , Candida albicans , Candidiasis/metabolismo , Candidiasis/microbiología , Citocinas/metabolismo , Infiltración Neutrófila , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína LigasasRESUMEN
The enzyme cyclic GMP-AMP synthase (cGAS) is a key sensor for detecting misplaced double-stranded DNA (dsDNA) of genomic, mitochondrial, and microbial origin. It synthesizes 2'3'-cGAMP, which in turn activates the stimulator of interferon genes pathway, leading to the initiation of innate immune responses. Here, we identified Listerin as a negative regulator of cGAS-mediated innate immune response. We found that Listerin interacts with cGAS on endosomes and promotes its K63-linked ubiquitination through recruitment of the E3 ligase TRIM27. The polyubiquitinated cGAS is then recognized by the endosomal sorting complexes required for transport machinery and sorted into endosomes for degradation. Listerin deficiency enhances the innate antiviral response to herpes simplex virus 1 infection. Genetic deletion of Listerin also deteriorates the neuroinflammation and the ALS disease progress in an ALS mice model; overexpression of Listerin can robustly ameliorate disease progression in ALS mice. Thus, our work uncovers a mechanism for cGAS regulation and suggests that Listerin may be a promising therapeutic target for ALS disease.
Asunto(s)
Esclerosis Amiotrófica Lateral , Ubiquitina-Proteína Ligasas , Animales , Ratones , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inmunidad Innata/genética , Nucleotidiltransferasas/metabolismo , Proteolisis , Transducción de Señal/fisiología , Modelos Animales de Enfermedad , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Origins of pH effects on the kinetics of electrocatalytic reactions involving the transfer of both protons and electrons, including the hydrogen evolution reaction (HER) considered in this study, are heatedly debated. By taking the HER at Au(111) in acid solutions of different pHs and ionic concentrations as the model systems, herein, we report how to derive the intrinsic kinetic parameters of such reactions and their pH dependence through the measurement of j-E curves and the corresponding kinetic simulation based on the Frumkin-Butler-Volmer theory and the modified Poisson-Nernst-Planck equation. Our study reveals the following: (i) the same set of kinetic parameters, such as the standard activation Gibbs free energy, charge transfer coefficient, and Gibbs adsorption energy for Had at Au(111), can simulate well all the j-E curves measured in solutions with different pH and temperatures; (ii) on the reversible hydrogen electrode scale, the intrinsic rate constant increases with the increase of pH, which is in contrast with the decrease of the HER current with the increase of pH; and (iii) the ratio of the rate constants for HER at Au(111) in x M HClO4 + (0.1 - x) M NaClO4 (pH ≤ 3) deduced before properly correcting the electric double layer (EDL) effects to the ones estimated with EDL correction is in the range of ca. 10 to 40, and even in a solution of x M HClO4 + (1 - x) M NaClO4 (pH ≤ 2) there is a difference of ca. 5× in the rate constants without and with EDL correction. The importance of proper correction of the EDL effects as well as several other important factors on unveiling the intrinsic pH-dependent reaction kinetics are discussed to help converge our analysis of pH effects in electrocatalysis.
RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has seriously threatened global public health. Severe COVID-19 has been reported to be associated with an impaired IFN response. However, the mechanisms of how SARS-CoV-2 antagonizes the host IFN response are poorly understood. In this study, we report that SARS-CoV-2 helicase NSP13 inhibits type I IFN production by directly targeting TANK-binding kinase 1 (TBK1) for degradation. Interestingly, inhibition of autophagy by genetic knockout of Beclin1 or pharmacological inhibition can rescue NSP13-mediated TBK1 degradation in HEK-293T cells. Subsequent studies revealed that NSP13 recruits TBK1 to p62, and the absence of p62 can also inhibit TBK1 degradation in HEK-293T and HeLa cells. Finally, TBK1 and p62 degradation and p62 aggregation were observed during SARS-CoV-2 infection in HeLa-ACE2 and Calu3 cells. Overall, our study shows that NSP13 inhibits type I IFN production by recruiting TBK1 to p62 for autophagic degradation, enabling it to evade the host innate immune response, which provides new insights into the transmission and pathogenesis of SARS-CoV-2 infection.
Asunto(s)
Autofagia , COVID-19/inmunología , ARN Polimerasa Dependiente de ARN de Coronavirus/fisiología , Interferón Tipo I/biosíntesis , Metiltransferasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Helicasas/fisiología , SARS-CoV-2/fisiología , Proteína Sequestosoma-1/metabolismo , Proteínas no Estructurales Virales/fisiología , Beclina-1/antagonistas & inhibidores , Línea Celular , Regulación hacia Abajo , Humanos , Evasión Inmune , Inmunidad Innata , Inmunoprecipitación , Interferón Tipo I/genética , Complejos Multiproteicos , Agregado de Proteínas , Mapeo de Interacción de ProteínasRESUMEN
We report the free energy barriers for the elementary reactions in the 2e- and 4e- oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e- pathway is clearly favored, while the barrier for the O-O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O-O dissociation channel, leading to the 4e- pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0-1.2 V region (RHE). In contrast, the O-O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.
RESUMEN
Folding phenomenon refers to the formation of a specific conformation widely featured by the intramolecular interactions, which broadly exist in biomacromolecules, and are closely related to their structures and functions. A variety of oligomeric folded molecules have been designed and synthesized, namely "foldamer", exhibiting potentials in pharmaceutical and catalysis. Molecular folding is a promising strategy to transfer chirality from substituents to the whole skeleton, when chirality transfer, amplification, evolution, and other behaviors could be achieved. Investigating chirality using foldamer model deepens the understanding of the structure-function correlation in biomacromolecules and expands the molecular toolbox towards chiroptical and asymmetrical chemistry. Substitutes with abundant hydrogen bonding sites conjugated to a rotatable aryl group afford a parallel ß-sheet-like conformation, which enables the emergence and manipulation of axial chirality. This concept aims to give a brief introduction and summary of the hydrogen bonded foldamers with anchored axial chirality, by taking some recent cases as examples. Design principles, control over axial chirality and applications are also reviewed.
RESUMEN
The IκB kinase (IKK) complex plays a vital role in regulating the NF-κB activation. Aberrant NF-κB activation is involved in various inflammatory diseases. Thus, targeting IKK activation is an ideal therapeutic strategy to cure and prevent inflammatory diseases related to NF-κB activation. In a previous study, we demonstrated that IKK-interacting protein (IKIP) inhibits the phosphorylation of IKKα/ß and the activation of NF-κB through disruption of the formation of IKK complex. In this study, we identified a 15-aa peptide derived from mouse IKIP (46-60 aa of IKIP), which specifically suppressed IKK activation and NF-κB targeted gene expression via disrupting the association of IKKß and NEMO. Importantly, administration of the peptide reduced LPS-induced acute inflammation and attenuated Zymosan-induced acute arthritis in mice. These findings suggest that this IKIP peptide may be a promising therapeutic reagent in the prevention and treatment of inflammatory diseases.
Asunto(s)
Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , FN-kappa B/metabolismo , Péptidos/administración & dosificación , Transducción de Señal/efectos de los fármacos , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Ratones , Ratones Noqueados , Unión Proteica , Transducción de Señal/genética , Zimosan/efectos adversosRESUMEN
CARD9 is an essential adaptor protein in antifungal innate immunity mediated by C-type lectin receptors. The activity of CARD9 is critically regulated by ubiquitination; however, the deubiquitinases involved in CARD9 regulation remain incompletely understood. In this study, we identified ovarian tumor deubiquitinase 1 (OTUD1) as an essential regulator of CARD9. OTUD1 directly interacted with CARD9 and cleaved polyubiquitin chains from CARD9, leading to the activation of the canonical NF-κB and MAPK pathway. OTUD1 deficiency impaired CARD9-mediated signaling and inhibited the proinflammatory cytokine production following fungal stimulation. Importantly, Otud1 -/- mice were more susceptible to fungal infection than wild-type mice in vivo. Collectively, our results identify OTUD1 as an essential regulatory component for the CARD9 signaling pathway and antifungal innate immunity through deubiquitinating CARD9.
Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Candida albicans/fisiología , Candidiasis/inmunología , Enzimas Desubicuitinizantes/metabolismo , Neutrófilos/inmunología , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Células Cultivadas , Citotoxicidad Inmunológica , Enzimas Desubicuitinizantes/genética , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal , Proteasas Ubiquitina-Específicas/genética , UbiquitinaciónRESUMEN
The present study aimed to investigate the protective role of Shaofu Zhuyu Decoction(SFZY) against endometriosis fibrosis in mice, and decipher the underlying mechanism through the phosphatase and tensin homolog deleted on chromosome ten(PTEN)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) pathway. Eighty-five BALB/c female mice were randomly assigned into a blank group, a model group, high-, medium, and low-dose SFZY(SFZY-H, SFZY-M, and SFZY-L, respectively) groups, and a gestrinone suspension(YT) group. The model of endometriosis was induced by intraperitoneal injection of uterine fragments. The mice in different groups were administrated with corresponding groups by gavage 14 days after modeling, and the blank group and model group with equal volume of distilled water by gavage. The treatment lasted for 14 days. The body weight, paw withdrawal latency caused by heat stimuli, and total weight of dissected ectopic focus were compared between different groups. The pathological changes of the ectopic tissue were observed via hematoxylin-eosin(HE) and Masson staining. Real-time PCR was employed to measure the mRNA levels of α-smooth muscle actin(α-SMA) and collagen type â (collagen-â ) in the ectopic tissue. The protein levels of PTEN, Akt, mTOR, p-Akt, and p-mTOR in the ectopic tissue were determined by Western blot. Compared with the blank group, the modeling first decreased and then increased the body weight of mice, increased the total weight of ectopic focus, and shortened the paw withdrawal latency. Compared with the model group, SFZY and YT increased the body weight, prolonged the paw withdrawal latency, and decreased the weight of ectopic focus. Furthermore, the drug administration, especially SFZY-H and YT(P<0.01), recovered the pathological and reduced the area of collagen deposition. Compared with the blank group, the modeling up-regulated the mRNA levels of α-SMA and collagen-â in the ectopic focus, and such up-regulation was attenuated after drug intervention, especially in the SFZY-H and YT groups(P<0.05,P<0.01). Compared with the blank group, the modeling down-regulated the protein level of PTEN and up-regulated the protein levels of Akt, mTOR, p-Akt, and p-mTOR(P<0.01, P<0.001). Drug administration, especially SFZY-H and YT, restored such changes(P<0.01). SFZY may significantly attenuate the focal fibrosis in the mouse model of endometriosis by regulating the PTEN/Akt/mTOR signaling pathway.
Asunto(s)
Coristoma , Endometriosis , Femenino , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Endometriosis/tratamiento farmacológico , Endometriosis/genética , Serina-Treonina Quinasas TOR/genética , ARN Mensajero , Transducción de Señal , Peso Corporal , Mamíferos , Fosfohidrolasa PTEN/genéticaRESUMEN
Multiple constituent coassembly is an emerging strategy to manipulate supramolecular chirality and chiroptical properties such as circularly polarized luminescence (CPL). However, the second or third constituent could not be removed from pristine self-assembly. Here we developed a constitute-removable chiral coassembly using sublimation that could realize coassembly with tunable supramolecular chirality, luminescence and CPL properties. Octafluoronapthalene (OFN) with small sublimation enthalpy formed coassemblies with perylene-conjugated peptoids via arene-perfluoroarene (AP) interaction that induced the emergence of macroscopic chirality and hypsochromic luminescence from yellow to green. Coassembly with OFN accelerated one-dimensional growth and induced the emergence of macroscopic chirality and CPL. Despite the stability at ambient conditions, vacuum-treatment triggered fast sublimation of OFN, which behaved as a sacrificial template. Physical removal of OFN retained the helical nanoarchitectures as well as the basic features of Cotton effects and CPL activities. X-ray diffraction suggested the back-fill consolidation occurred on the molecular voids by OFN removal that slightly varied the templated molecular arrangements. Sublimation of perfluorinated building units is green and efficient and non-destructive, which is potentially applicable in constructing template-directed chiroptical materials and devices.
Asunto(s)
Peptoides , Perileno , Luminiscencia , Difracción de Rayos XRESUMEN
The [1,2]-Meisenheimer rearrangement is well known as the [1,2]-migration of an O-substituted hydroxylamine from a tertiary amine N-oxide, and it is frequently employed in organic synthesis to enforce adjacent carbon oxidation or install a 1,2-oxazine core, which is a prevalent structural feature and pharmacophore of many bioactive natural products. Although the [1,2]-Meisenheimer rearrangement was proposed to occur in the biosynthesis of a number of 1,2-oxazine-containing natural products, it has never been proved biosynthetically. Here, we identified the biosynthetic gene cluster of an insecticidal natural product, paeciloxazine (1), from Penicillium janthinellum and characterized a flavin-dependent monooxygenase, PaxA, as the first example that mediates the formation of a 1,2-oxazine moiety via Meisenheimer rearrangement. In vitro biochemical assays, site-directed mutations, docking and molecular dynamics simulations, and density functional theory calculations support the mechanism that PaxA first catalyzes N-oxidation to form an N-oxide intermediate, which undergoes [1,2]-Meisenheimer rearrangement with the assistance of an amino acid with proton transfer property. This study expands the repertoire of rearrangement reactions during the biosynthesis of natural products and provides a new strategy for discovering natural products with N-O tethers by genome mining.
Asunto(s)
Productos Biológicos , Oxigenasas de Función Mixta , Dinitrocresoles , Flavinas/metabolismo , Oxigenasas de Función Mixta/química , Compuestos Orgánicos , Oxazinas , ÓxidosRESUMEN
The filamentous fungi Monascus spp. have been widely used in the production of food colorants. However, the presence of mycotoxin citrinin and the antihypercholestrolemia agent monacolin K in Monascus-fermented products (MFPs) has raised food safety concerns. Here we de novo-sequenced the genomes of 26 Monascus species and proposed an unprecedented classification system, consist of sections A, B and C, according to the biosynthetic gene clusters (BGCs) distribution and phylogeny results. Based on the absence of citrinin gene cluster, section B species were genetically incapable of synthesizing citrinin. A distinguished section A strain named Monascus sanguineus was believed to be a promising food-pigment-producer particularly owing to the simultaneous inactivation of citrinin and monacolin K clusters. Interestingly, gene losses within Monascus secondary metabolism gene clusters were broadly discovered, which may convey a selective advantage in nutrients and energy competition to support the strong pigment-producing ability. Overall, our sectional delimitation system will reshape the industrial strategies for this economically important fungus.
Asunto(s)
Citrinina , Monascus , Citrinina/metabolismo , Lovastatina , Monascus/genética , Familia de Multigenes , Pigmentos Biológicos , Metabolismo SecundarioRESUMEN
Using green chemistry to control chirality at hierarchical levels as well as chiroptical activities endows with new opportunities to the development of multiple functions. Here, the four-component Ugi reaction is introduced for the general and precise optical chirality sensing of amines as well as the surface nanoengineering of chiral soft self-assemblies. To overcome the relatively weak Cotton effects, direct synthesis of a folded peptide structure on a rotatable ferrocene core with axial chirality was accomplished from chiral amine, 1,1'-ferrocenyl dicarboxylic acid, formaldehyde and isocyanide. Enhanced Cotton effects benefiting from the folded structure allow for the precise and quantitative sensing of natural and synthetic chiral amines covering alkyl, aromatic amines and amino acid derivatives. In addition, aqueous reaction enables the modification of amine-bearing dye to microfibers self-assembled from π-conjugated amino acids. Surface dye-modification via Ugi reaction barely changes the pristine morphology, showing non-invasive properties in contrast to dye staining, which is applicable in soft nano/microarchitectures from self-assembly. This work which combines the four-component Ugi reaction to enable precise ee% detection and surface nanoengineering of soft chiral assemblies sheds light on the advanced application of green chemistry to chirality science.
Asunto(s)
Aminas , Aminoácidos , Aminas/química , Aminoácidos/química , Péptidos , EstereoisomerismoRESUMEN
Molecular structures are commonly depicted in 2D printed forms in scientific documents such as journal papers and patents. However, these 2D depictions are not machine readable. Due to a backlog of decades and an increasing amount of printed literatures, there is a high demand for translating printed depictions into machine-readable formats, which is known as Optical Chemical Structure Recognition (OCSR). Most OCSR systems developed over the last three decades use a rule-based approach, which vectorizes the depiction based on the interpretation of vectors and nodes as bonds and atoms. Here, we present a practical software called MolMiner, which is primarily built using deep neural networks originally developed for semantic segmentation and object detection to recognize atom and bond elements from documents. These recognized elements can be easily connected as a molecular graph with a distance-based construction algorithm. MolMiner gave state-of-the-art performance on four benchmark data sets and a self-collected external data set from scientific papers. As MolMiner performed similarly well in real-world OCSR tasks with a user-friendly interface, it is a useful and valuable tool for daily applications. The free download links of Mac and Windows versions are available at https://github.com/iipharma/pharmamind-molminer.
Asunto(s)
Algoritmos , Programas Informáticos , Estructura Molecular , Redes Neurales de la ComputaciónRESUMEN
Stringent regulation of the transcription factor NF-κB signaling is essential for the activation of host immune responses and maintaining homeostasis, yet the molecular mechanisms involved in its tight regulation are not completely understood. In this study, we report that IKK-interacting protein (IKIP) negatively regulates NF-κB activation. IKIP interacted with IKKα/ß to block its association with NEMO, thereby inhibiting the phosphorylation of IKKα/ß and the activation of NF-κB. Upon LPS, TNF-α, and IL-1ß stimulation, IKIP-deficient macrophages exhibited more and prolonged IKKα/ß phosphorylation, IκB, and p65 phosphorylation and production of NF-κB-responsive genes. Moreover, IKIP-deficient mice were more susceptible to LPS-induced septic shock and dextran sodium sulfate-induced colitis. Our study identifies a previously unrecognized role for IKIP in the negative regulation of NF-κB activation by inhibition of IKKα/ß phosphorylation through the disruption of IKK complex formation.
Asunto(s)
Colitis/metabolismo , Quinasa I-kappa B/metabolismo , Inflamación/inmunología , Animales , Colitis/inmunología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , FN-kappa B/genética , FN-kappa B/metabolismo , Fragmentos de Péptidos/metabolismo , Fosforilación , Unión Proteica , Dodecil Sulfato de Sodio , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, catalyzes the formation of the second messenger 2'3'-cGAMP that binds to STING and triggers the type I IFN signaling. Activation of cGAS can be modulated by several protein posttranslational modifications, including ubiquitination. However, the cGAS activation regulated by protein deubiquitination remains poorly understood. In this study, we identified that deubiquitinase USP27X could interact with cGAS and cleave K48-linked polyubiquitination chains from cGAS, leading to cGAS stabilization. Consistently, knockout of Usp27x in mice macrophages resulted in an accelerated turnover of cGAS, decreased cGAMP production, phosphorylation of TBK1 and IRF3, and IFN-ß production. Furthermore, Usp27x knockout mice macrophages showed impaired innate antiviral responses against HSV type 1 infection. Our data suggest that USP27X is a novel regulator of the cGAS-STING cytosolic DNA sensing pathway.
Asunto(s)
Citosol/metabolismo , ADN/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Células RAW 264.7 , Proteasas Ubiquitina-Específicas/deficiencia , UbiquitinaciónRESUMEN
Self-resistance genes are employed by many microbial producers of bioactive natural products to avoid self-harm. Herein, we describe a unique strategy for self-resistance toward a macrolide antibiotic, A26771B (1), identified by elucidating its biosynthetic pathway in the fungus Penicillium egyptiacum. A highly reducing polyketide synthase and a trans-acting thioesterase generate the macrolide backbone, and a cytochrome P450 and an acyltransferase, respectively catalyze hydroxylation and succinylation to form the prodrug berkeleylactoneâ E (2). Then, extracellular oxidative activation by a secreted flavin-dependent oxidase forms 1, while intracellular reductive inactivation by a short-chain reductase reforms 2, forming a redox cycle. Our work illustrates a unique redox-mediated resistance mechanism for fungal antibiotics and contributes to the understanding of antibiotic biosynthesis and resistance.