Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 145(7): 1088-101, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21703451

RESUMEN

INAD is a scaffolding protein that regulates signaling in Drosophila photoreceptors. One of its PDZ domains, PDZ5, cycles between reduced and oxidized forms in response to light, but it is unclear how light affects its redox potential. Through biochemical and structural studies, we show that the redox potential of PDZ5 is allosterically regulated by its interaction with another INAD domain, PDZ4. Whereas isolated PDZ5 is stable in the oxidized state, formation of a PDZ45 "supramodule" locks PDZ5 in the reduced state by raising the redox potential of its Cys606/Cys645 disulfide bond by ∼330 mV. Acidification, potentially mediated via light and PLCß-mediated hydrolysis of PIP(2), disrupts the interaction between PDZ4 and PDZ5, leading to PDZ5 oxidation and dissociation from the TRP Ca(2+) channel, a key component of fly visual signaling. These results show that scaffolding proteins can actively modulate the intrinsic redox potentials of their disulfide bonds to exert regulatory roles in signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Ojo/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Ojo/metabolismo , Proteínas del Ojo/química , Modelos Moleculares , Oxidación-Reducción , Dominios PDZ , Células Fotorreceptoras de Invertebrados/metabolismo , Transducción de Señal
2.
J Neurosci ; 40(16): 3152-3164, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32156830

RESUMEN

Phototransduction in Drosophila is mediated by phospholipase C (PLC) and Ca2+-permeable TRP channels, but the function of endoplasmic reticulum (ER) Ca2+ stores in this important model for Ca2+ signaling remains obscure. We therefore expressed a low affinity Ca2+ indicator (ER-GCaMP6-150) in the ER, and measured its fluorescence both in dissociated ommatidia and in vivo from intact flies of both sexes. Blue excitation light induced a rapid (tau ∼0.8 s), PLC-dependent decrease in fluorescence, representing depletion of ER Ca2+ stores, followed by a slower decay, typically reaching ∼50% of initial dark-adapted levels, with significant depletion occurring under natural levels of illumination. The ER stores refilled in the dark within 100-200 s. Both rapid and slow store depletion were largely unaffected in InsP3 receptor mutants, but were much reduced in trp mutants. Strikingly, rapid (but not slow) depletion of ER stores was blocked by removing external Na+ and in mutants of the Na+/Ca2+ exchanger, CalX, which we immuno-localized to ER membranes in addition to its established localization in the plasma membrane. Conversely, overexpression of calx greatly enhanced rapid depletion. These results indicate that rapid store depletion is mediated by Na+/Ca2+ exchange across the ER membrane induced by Na+ influx via the light-sensitive channels. Although too slow to be involved in channel activation, this Na+/Ca2+ exchange-dependent release explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors exposed to Ca2+-free solutions.SIGNIFICANCE STATEMENT Phototransduction in Drosophila is mediated by phospholipase C, which activates TRP cation channels by an unknown mechanism. Despite much speculation, it is unknown whether endoplasmic reticulum (ER) Ca2+ stores play any role. We therefore engineered flies expressing a genetically encoded Ca2+ indicator in the photoreceptor ER. Although NCX Na+/Ca2+ exchangers are classically believed to operate only at the plasma membrane, we demonstrate a rapid light-induced depletion of ER Ca2+ stores mediated by Na+/Ca2+ exchange across the ER membrane. This NCX-dependent release was too slow to be involved in channel activation, but explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors bathed in Ca2+-free solutions.


Asunto(s)
Antiportadores/metabolismo , Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Fototransducción/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Animales Modificados Genéticamente , Antiportadores/genética , Señalización del Calcio/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Masculino , Intercambiador de Sodio-Calcio/genética
3.
J Cell Sci ; 131(8)2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29567856

RESUMEN

Phototransduction in Drosophila is mediated by phospholipase C-dependent hydrolysis of PIP2-, and is an important model for phosphoinositide signalling. Although generally assumed to operate by generic machinery conserved from yeast to mammals, some key elements of the phosphoinositide cycle have yet to be identified in Drosophila photoreceptors. Here, we used transgenic flies expressing fluorescently tagged probes (P4M and TbR332H), which allow in vivo quantitative measurements of PI4P and PIP2 dynamics in photoreceptors of intact living flies. Using mutants and RNA interference for candidate genes potentially involved in phosphoinositide turnover, we identified Drosophila PI4KIIIα (CG10260) as the PI4-kinase responsible for PI4P synthesis in the photoreceptor membrane. Our results also indicate that PI4KIIIα activity requires rbo (the Drosophila orthologue of Efr3) and CG8325 (orthologue of YPP1), both of which are implicated as scaffolding proteins necessary for PI4KIIIα activity in yeast and mammals. However, our evidence indicates that the recently reported central role of dPIP5K59B (CG3682) in PIP2 synthesis in the rhabdomeres should be re-evaluated; although PIP2 resynthesis was suppressed by RNAi directed against dPIP5K59B, little or no defect was detected in a reportedly null mutant (dPIP5K18 ).


Asunto(s)
Fosfatidilinositoles/genética , Células Fotorreceptoras/metabolismo , Animales , Drosophila , Fosfatidilinositoles/metabolismo
4.
J Cell Sci ; 128(23): 4328-40, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26483384

RESUMEN

In order to monitor phosphoinositide turnover during phospholipase C (PLC)-mediated Drosophila phototransduction, fluorescently tagged lipid probes were expressed in photoreceptors and imaged both in dissociated cells, and in eyes of intact living flies. Of six probes tested, Tb(R332H) (a mutant of the Tubby protein pleckstrin homology domain) was judged the best reporter for phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], and the P4M domain from Legionella SidM for phosphatidylinositol 4-phosphate (PtdIns4P). Using accurately calibrated illumination, we found that only ∼50% of PtdIns(4,5)P2 and very little PtdIns4P were depleted by full daylight intensities in wild-type flies, but both were severely depleted by ∼100-fold dimmer intensities in mutants lacking Ca(2+)-permeable transient receptor potential (TRP) channels or protein kinase C (PKC). Resynthesis of PtdIns4P (t½ ∼12 s) was faster than PtdIns(4,5)P2 (t½ ∼40 s), but both were greatly slowed in mutants of DAG kinase (rdgA) or PtdIns transfer protein (rdgB). The results indicate that Ca(2+)- and PKC-dependent inhibition of PLC is required for enabling photoreceptors to maintain phosphoinositide levels despite high rates of hydrolysis by PLC, and suggest that phosphorylation of PtdIns4P to PtdIns(4,5)P2 is the rate-limiting step of the cycle.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Calcio/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo
5.
J Neurosci ; 35(6): 2731-46, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25673862

RESUMEN

Drosophila phototransduction is mediated via a G-protein-coupled PLC cascade. Recent evidence, including the demonstration that light evokes rapid contractions of the photoreceptors, suggested that the light-sensitive channels (TRP and TRPL) may be mechanically gated, together with protons released by PLC-mediated PIP2 hydrolysis. If mechanical gating is involved we predicted that the response to light should be influenced by altering the physical properties of the membrane. To achieve this, we used diet to manipulate the degree of saturation of membrane phospholipids. In flies reared on a yeast diet, lacking polyunsaturated fatty acids (PUFAs), mass spectrometry showed that the proportion of polyunsaturated phospholipids was sevenfold reduced (from 38 to ∼5%) but rescued by adding a single species of PUFA (linolenic or linoleic acid) to the diet. Photoreceptors from yeast-reared flies showed a 2- to 3-fold increase in latency and time to peak of the light response, without affecting quantum bump waveform. In the absence of Ca(2+) influx or in trp mutants expressing only TRPL channels, sensitivity to light was reduced up to ∼10-fold by the yeast diet, and essentially abolished in hypomorphic G-protein mutants (Gαq). PLC activity appeared little affected by the yeast diet; however, light-induced contractions measured by atomic force microscopy or the activation of ectopic mechanosensitive gramicidin channels were also slowed ∼2-fold. The results are consistent with mechanosensitive gating and provide a striking example of how dietary fatty acids can profoundly influence sensory performance in a classical G-protein-coupled signaling cascade.


Asunto(s)
Membrana Celular/fisiología , Drosophila melanogaster/fisiología , Fototransducción/fisiología , Fosfolípidos/fisiología , Animales , Membrana Celular/metabolismo , Dieta , Activación del Canal Iónico/fisiología , Luz , Metabolismo de los Lípidos/fisiología , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Rodopsina/metabolismo , Relación Señal-Ruido , Intercambiador de Sodio-Calcio/metabolismo , Fosfolipasas de Tipo C/metabolismo
6.
J Neurosci ; 32(27): 9205-16, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764229

RESUMEN

Upon illumination several phototransduction proteins translocate between cell body and photosensory compartments. In Drosophila photoreceptors arrestin (Arr2) translocates from cell body to the microvillar rhabdomere down a diffusion gradient created by binding of Arr2 to photo-isomerized metarhodopsin. Translocation is profoundly slowed in mutants of key phototransduction proteins including phospholipase C (PLC) and the Ca(2+)-permeable transient receptor potential channel (TRP), but how the phototransduction cascade accelerates Arr2 translocation is unknown. Using real-time fluorescent imaging of Arr2-green fluorescent protein translocation in dissociated ommatidia, we show that translocation is profoundly slowed in Ca(2+)-free solutions. Conversely, in a blind PLC mutant with ∼100-fold slower translocation, rapid translocation was rescued by the Ca(2+) ionophore, ionomycin. In mutants lacking NINAC (calmodulin [CaM] binding myosin III) in the cell body, translocation remained rapid even in Ca(2+)-free solutions. Immunolabeling revealed that Arr2 in the cell body colocalized with NINAC in the dark. In intact eyes, the impaired translocation found in trp mutants was rescued in ninaC;trp double mutants. Nevertheless, translocation following prolonged dark adaptation was significantly slower in ninaC mutants, than in wild type: a difference that was reflected in the slow decay of the electroretinogram. The results suggest that cytosolic NINAC is a Ca(2+)-dependent binding target for Arr2, which protects Arr2 from immobilization by a second potential sink that sequesters and releases arrestin on a much slower timescale. We propose that rapid Ca(2+)/CaM-dependent release of Arr2 from NINAC upon Ca(2+) influx accounts for the acceleration of translocation by phototransduction.


Asunto(s)
Arrestinas/metabolismo , Calcio/fisiología , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cadenas Pesadas de Miosina/deficiencia , Miosina Tipo III/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Visión Ocular/fisiología , Animales , Animales Modificados Genéticamente , Arrestinas/genética , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Femenino , Masculino , Cadenas Pesadas de Miosina/genética , Miosina Tipo III/genética , Células Fotorreceptoras de Invertebrados/citología , Transporte de Proteínas/fisiología
7.
J Neurophysiol ; 109(8): 2044-55, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365183

RESUMEN

Absolute visual thresholds are limited by "dark noise," which in Drosophila photoreceptors is dominated by brief (∼10 ms), small (∼2 pA) inward current events, occurring at ∼2/s, believed to reflect spontaneous G protein activations. These dark events were increased in rate and amplitude by a point mutation in myosin III (NINAC), which disrupts its interaction with the scaffolding protein, INAD. This phenotype mimics that previously described in null mutants of ninaC (no inactivation no afterpotential; encoding myosin III) and an associated protein, retinophilin (rtp). Dark noise was similarly increased in heterozygote mutants of diacylglycerol kinase (rdgA/+). Dark noise in ninaC, rtp, and rdgA/+ mutants was greatly suppressed by mutations of the Gq α-subunit (Gαq) and the major light-sensitive channel (trp) but not rhodopsin. ninaC, rtp, and rdgA/+ mutations also all facilitated residual light responses in Gαq and PLC hypomorphs. Raising cytosolic Ca(2+) in the submicromolar range increased dark noise, facilitated activation of transient receptor potential (TRP) channels by exogenous agonist, and again facilitated light responses in Gαq hypomorphs. Our results indicate that RTP, NINAC, INAD, and diacylglycerol kinase, together with a Ca(2+)-dependent threshold, share common roles in suppressing dark noise and regulating quantum bump generation; consequently, most spontaneous G protein activations fail to generate dark events under normal conditions. By contrast, quantum bump generation is reliable but delayed until sufficient G proteins and PLC are activated to overcome threshold, thereby ensuring generation of full-size bumps with high quantum efficiency.


Asunto(s)
Potenciales de Acción , Drosophila/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Calcio/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Heterocigoto , Mutación , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Umbral Sensorial , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
8.
Clin Sci (Lond) ; 124(12): 701-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23336180

RESUMEN

Mutations in the novel serine/threonine WNK [With No lysine (=K)] kinases WNK1 and WNK4 cause PHAII (pseudohypoaldosteronism type II or Gordon's syndrome), a rare monogenic syndrome which causes hypertension and hyperkalaemia on a background of a normal glomerular filtration rate. Current animal models for PHAII recapitulate some aspects of the disease phenotype, but give no clues to how rapidly the phenotype emerges or whether it is reversible. To this end we have created an inducible PHAII transgenic animal model that expresses a human disease-causing WNK4 mutation, WNK4 Q565E, under the control of the Tet-On system. Several PHAII inducible transgenic mouse lines were created, each with differing TG (transgene) copy numbers and displaying varying degrees of TG expression (low, medium and high). Each of these transgenic lines demonstrated similar elevations of BP (blood pressure) and plasma potassium after 4 weeks of TG induction. Withdrawal of doxycycline switched off mutant TG expression and the disappearance of the PHAII phenotype. Western blotting of microdissected kidney nephron segments confirmed that expression of the thiazide-sensitive NCC (Na⁺-Cl⁻ co-transporter) was increased, as expected, in the distal convoluted tubule when transgenic mice were induced with doxycycline. The kidneys of these mice also do not show the morphological changes seen in the previous transgenic model expressing the same mutant form of WNK4. This inducible model shows, for the first time, that in vivo expression of a mutant WNK4 protein is sufficient to cause the rapid and reversible appearance of a PHAII disease phenotype in mice.


Asunto(s)
Riñón/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/enzimología , Animales , Biomarcadores/sangre , Presión Sanguínea , Western Blotting , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genotipo , Humanos , Hibridación Fluorescente in Situ , Riñón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fenotipo , Potasio/sangre , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/sangre , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/fisiopatología , Simportadores del Cloruro de Sodio/metabolismo , Factores de Tiempo
9.
J Neurosci ; 28(29): 7250-9, 2008 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-18632929

RESUMEN

Histamine (HA) is the photoreceptor neurotransmitter in arthropods, directly gating chloride channels on large monopolar cells (LMCs), postsynaptic to photoreceptors in the lamina. Two histamine-gated channel genes that could contribute to this channel in Drosophila are hclA (also known as ort) and hclB (also known as hisCl1), both encoding novel members of the Cys-loop receptor superfamily. Drosophila S2 cells transfected with these genes expressed both homomeric and heteromeric histamine-gated chloride channels. The electrophysiological properties of these channels were compared with those from isolated Drosophila LMCs. HCLA homomers had nearly identical HA sensitivity to the native receptors (EC(50) = 25 microM). Single-channel analysis revealed further close similarity in terms of single-channel kinetics and subconductance states ( approximately 25, 40, and 60 pS, the latter strongly voltage dependent). In contrast, HCLB homomers and heteromeric receptors were more sensitive to HA (EC(50) = 14 and 1.2 microM, respectively), with much smaller single-channel conductances ( approximately 4 pS). Null mutations of hclA (ort(US6096)) abolished the synaptic transients in the electroretinograms (ERGs). Surprisingly, the ERG "on" transients in hclB mutants transients were approximately twofold enhanced, whereas intracellular recordings from their LMCs revealed altered responses with slower kinetics. However, HCLB expression within the lamina, assessed by both a GFP (green fluorescent protein) reporter gene strategy and mRNA tagging, was exclusively localized to the glia cells, whereas HCLA expression was confirmed in the LMCs. Our results suggest that the native receptor at the LMC synapse is an HCLA homomer, whereas HCLB signaling via the lamina glia plays a previously unrecognized role in shaping the LMC postsynaptic response.


Asunto(s)
Canales de Cloruro/fisiología , Proteínas de Drosophila/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Receptores Histamínicos/fisiología , Sinapsis/fisiología , Animales , Línea Celular , Canales de Cloruro/biosíntesis , Canales de Cloruro/genética , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Mutación , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuroglía/fisiología , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/fisiología , Técnicas de Placa-Clamp , Estimulación Luminosa/métodos , Células Fotorreceptoras de Invertebrados/citología , Transmisión Sináptica/fisiología
10.
Dev Cell ; 45(4): 481-495.e8, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29754800

RESUMEN

Cell and organelle membranes consist of a complex mixture of phospholipids (PLs) that determine their size, shape, and function. Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, yet how cells sense and regulate its levels in vivo remains unclear. Here we show that PCYT1A, the rate-limiting enzyme of PC synthesis, is intranuclear and re-locates to the nuclear membrane in response to the need for membrane PL synthesis in yeast, fly, and mammalian cells. By aligning imaging with lipidomic analysis and data-driven modeling, we demonstrate that yeast PCYT1A membrane association correlates with membrane stored curvature elastic stress estimates. Furthermore, this process occurs inside the nucleus, although nuclear localization signal mutants can compensate for the loss of endogenous PCYT1A in yeast and in fly photoreceptors. These data suggest an ancient mechanism by which nucleoplasmic PCYT1A senses surface PL packing defects on the inner nuclear membrane to control PC homeostasis.


Asunto(s)
Membrana Celular/química , Núcleo Celular/química , Citidililtransferasa de Colina-Fosfato/metabolismo , Elasticidad , Membrana Nuclear/química , Fosfatidilcolinas/metabolismo , Estrés Fisiológico , Animales , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citidililtransferasa de Colina-Fosfato/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
11.
Cell Calcium ; 65: 40-51, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28238353

RESUMEN

Drosophila phototransduction is mediated by phospholipase C leading to activation of cation channels (TRP and TRPL) in the 30000 microvilli forming the light-absorbing rhabdomere. The channels mediate massive Ca2+ influx in response to light, but whether Ca2+ is released from internal stores remains controversial. We generated flies expressing GCaMP6f in their photoreceptors and measured Ca2+ signals from dissociated cells, as well as in vivo by imaging rhabdomeres in intact flies. In response to brief flashes, GCaMP6f signals had latencies of 10-25ms, reached 50% Fmax with ∼1200 effectively absorbed photons and saturated (ΔF/F0∼10-20) with 10000-30000 photons. In Ca2+ free bath, smaller (ΔF/F0 ∼4), long latency (∼200ms) light-induced Ca2+ rises were still detectable. These were unaffected in InsP3 receptor mutants, but virtually eliminated when Na+ was also omitted from the bath, or in trpl;trp mutants lacking light-sensitive channels. Ca2+ free rises were also eliminated in Na+/Ca2+ exchanger mutants, but greatly accelerated in flies over-expressing the exchanger. These results show that Ca2+ free rises are strictly dependent on Na+ influx and activity of the exchanger, suggesting they reflect re-equilibration of Na+/Ca2+ exchange across plasma or intracellular membranes following massive Na+ influx. Any tiny Ca2+ free rise remaining without exchanger activity was equivalent to <10nM (ΔF/F0 ∼0.1), and unlikely to play any role in phototransduction.


Asunto(s)
Señalización del Calcio , Proteínas de Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Fosfolipasas de Tipo C/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Microscopía Fluorescente , Células Fotorreceptoras de Invertebrados/citología , Fosfolipasas de Tipo C/genética
12.
eNeuro ; 4(3)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28660247

RESUMEN

Drosophila phototransduction is mediated by phospholipase C, leading to activation of transient receptor potential (TRP) and TRP-like (TRPL) channels by mechanisms that are unresolved. A role for InsP3 receptors (IP3Rs) had been excluded because IP3R mutants (itpr) appeared to have normal light responses; however, this was recently challenged by Kohn et al. ("Functional cooperation between the IP3 receptor and phospholipase C secures the high sensitivity to light of Drosophila photoreceptors in vivo," Journal of Neuroscience 35:2530), who reported defects in phototransduction after IP3R-RNAi knockdown. They concluded that InsP3-induced Ca2+ release plays a critical role in facilitating channel activation, and that previous failure to detect IP3R phenotypes resulted from trace Ca2+ in electrodes substituting for InsP3-induced Ca2+ release. In an attempt to confirm this, we performed electroretinograms, whole-cell recordings, and GCaMP6f Ca2+ imaging from both IP3R-RNAi flies and itpr-null mutants. Like Kohn et al., we used GMRGal4 to drive expression of UAS-IP3R-RNAi, but we also used controls expressing GMRGal4 alone. We describe several GMRGal4 phenotypes suggestive of compromised development, including reductions in sensitivity, dark noise, potassium currents, and cell size and capacitance, as well as extreme variations in sensitivity between cells. However, we found no effect of IP3R RNAi or mutation on photoreceptor responses or Ca2+ signals, indicating that the IP3R plays little or no role in Drosophila phototransduction.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fototransducción/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Expresión Génica , Receptores de Inositol 1,4,5-Trifosfato/genética , Potenciales de la Membrana/fisiología , Mutación , Técnicas de Placa-Clamp , Fenotipo , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Estimulación Luminosa , Interferencia de ARN , Retina/metabolismo , Retina/patología , Técnicas de Cultivo de Tejidos
13.
Mol Metab ; 4(4): 287-98, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25830092

RESUMEN

OBJECTIVE: Loss of function FTO mutations significantly impact body composition in humans and mice, with Fto-deficient mice reported to resist the development of obesity in response to a high-fat diet (HFD). We aimed to further explore the interactions between FTO and HFD and determine if FTO can influence the adverse metabolic consequence of HFD. METHODS: We studied mice deficient in FTO in two well validated models of leptin resistance (HFD feeding and central palmitate injection) to determine how Fto genotype may influence the action of leptin. Using transcriptomic analysis of hypothalamic tissue to identify relevant pathways affected by the loss of Fto, we combined data from co-immunoprecipitation, yeast 2-hybrid and luciferase reporter assays to identify mechanisms through which FTO can influence the development of leptin resistant states. RESULTS: Mice deficient in Fto significantly increased their fat mass in response to HFD. Fto (+/-) and Fto (-/-) mice remained sensitive to the anorexigenic effects of leptin, both after exposure to a HFD or after acute central application of palmitate. Genes encoding components of the NFкB signalling pathway were down-regulated in the hypothalami of Fto-deficient mice following a HFD. When this pathway was reactivated in Fto-deficient mice with a single low central dose of TNFα, the mice became less sensitive to the effect of leptin. We identified a transcriptional coactivator of NFкB, TRIP4, as a binding partner of FTO and a molecule that is required for TRIP4 dependent transactivation of NFкB. CONCLUSIONS: Our study demonstrates that, independent of body weight, Fto influences the metabolic outcomes of a HFD through alteration of hypothalamic NFкB signalling. This supports the notion that pharmacological modulation of FTO activity might have the potential for therapeutic benefit in improving leptin sensitivity, in a manner that is influenced by the nutritional environment.

14.
Neuron ; 70(5): 979-90, 2011 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-21658589

RESUMEN

A reduced sensitivity to the sedating effects of alcohol is a characteristic associated with alcohol use disorders (AUDs). A genetic screen for ethanol sedation mutants in Drosophila identified arouser (aru), which functions in developing neurons to reduce ethanol sensitivity. Genetic evidence suggests that aru regulates ethanol sensitivity through its activation by Egfr/Erk signaling and its inhibition by PI3K/Akt signaling. The aru mutant also has an increased number of synaptic terminals in the larva and adult fly. Both the increased ethanol sensitivity and synapse number of the aru mutant are restored upon adult social isolation, suggesting a causal relationship between synapse number and ethanol sensitivity. We thus show that a developmental abnormality affecting synapse number and ethanol sensitivity is not permanent and can be reversed by manipulating the environment of the adult fly.


Asunto(s)
Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Proteínas de Drosophila/genética , Etanol/farmacología , Mutación/genética , Sinapsis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Conducta Animal/fisiología , Encéfalo/citología , Encéfalo/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Larva , Unión Neuromuscular/genética , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Interferencia de ARN/fisiología , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Reflejo/efectos de los fármacos , Reflejo/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Aislamiento Social , Sinapsis/efectos de los fármacos
15.
Neuron ; 72(4): 602-15, 2011 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-22099462

RESUMEN

TRP channels have emerged as key biological sensors in vision, taste, olfaction, hearing, and touch. Despite their importance, virtually nothing is known about the folding and transport of TRP channels during biosynthesis. Here, we identify XPORT (exit protein of rhodopsin and TRP) as a critical chaperone for TRP and its G protein-coupled receptor (GPCR), rhodopsin (Rh1). XPORT is a resident ER and secretory pathway protein that interacts with TRP and Rh1, as well as with Hsp27 and Hsp90. XPORT promotes the targeting of TRP to the membrane in Drosophila S2 cells, a finding that provides a critical first step toward solving a longstanding problem in the successful heterologous expression of TRP. Mutations in xport result in defective transport of TRP and Rh1, leading to retinal degeneration. Our results identify XPORT as a molecular chaperone and provide a mechanistic link between TRP channels and their GPCRs during biosynthesis and transport.


Asunto(s)
Proteínas de Drosophila/metabolismo , Rodopsina/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Línea Celular , Drosophila , Chaperonas Moleculares/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Transporte de Proteínas/fisiología
16.
Neuron ; 67(6): 997-1008, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20869596

RESUMEN

Upon illumination, visual arrestin translocates from photoreceptor cell bodies to rhodopsin and membrane-rich photosensory compartments, vertebrate outer segments or invertebrate rhabdomeres, where it quenches activated rhodopsin. Both the mechanism and function of arrestin translocation are unresolved and controversial. In dark-adapted photoreceptors of the fruitfly Drosophila, confocal immunocytochemistry shows arrestin (Arr2) associated with distributed photoreceptor endomembranes. Immunocytochemistry and live imaging of GFP-tagged Arr2 demonstrate rapid reversible translocation to stimulated rhabdomeres in stoichiometric proportion to rhodopsin photoisomerization. Translocation is very rapid in normal photoreceptors (time constant <10 s) and can also be resolved in the time course of electroretinogram recordings. Genetic elimination of key phototransduction proteins, including phospholipase C (PLC), Gq, and the light-sensitive Ca2+-permeable TRP channels, slows translocation by 10- to 100-fold. Our results indicate that Arr2 translocation in Drosophila photoreceptors is driven by diffusion, but profoundly accelerated by phototransduction and Ca2+ influx.


Asunto(s)
Arrestinas/metabolismo , Proteínas de Drosophila/metabolismo , Fototransducción/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Rodopsina/metabolismo , Animales , Animales Modificados Genéticamente , Arrestinas/genética , Calcio/metabolismo , Adaptación a la Oscuridad/genética , Drosophila , Proteínas de Drosophila/genética , Electrorretinografía/métodos , Endocitosis/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Fluorescentes Verdes/genética , Isomerismo , Luz , Fototransducción/genética , Mutación/genética , Fosfolipasa C beta/genética , Transporte de Proteínas/fisiología , Análisis Espectral , Factores de Tiempo , Canales de Potencial de Receptor Transitorio/genética
17.
Curr Biol ; 20(3): 189-97, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20116246

RESUMEN

BACKGROUND: Phototransduction in microvillar photoreceptors is mediated via G protein-coupled phospholipase C (PLC), but how PLC activation leads to the opening of the light-sensitive TRPC channels (TRP and TRPL) remains unresolved. In Drosophila, InsP(3) appears not to be involved, and recent studies have implicated lipid products of PLC activity, e.g., diacylglycerol, its metabolites, or the reduction in PIP(2). The fact that hydrolysis of the phosphodiester bond in PIP(2) by PLC also releases a proton is seldom recognized and has neither been measured in vivo nor implicated previously in a signaling context. RESULTS: Following depletion of PIP(2) and other phosphoinositides by a variety of experimental manipulations, the light-sensitive channels in Drosophila photoreceptors become remarkably sensitive to rapid and reversible activation by the lipophilic protonophore 2-4 dinitrophenol in a pH-dependent manner. We further show that light induces a rapid (<10 ms) acidification originating in the microvilli, which is eliminated in mutants of PLC, and that heterologously expressed TRPL channels are activated by acidification of the cytosolic surface of inside-out patches. CONCLUSIONS: Our results indicate that a combination of phosphoinositide depletion and acidification of the membrane/boundary layer is sufficient to activate the light-sensitive channels. Together with the demonstration of light-induced, PLC-dependent acidification, this suggests that excitation in Drosophila photoreceptors may be mediated by PLC's dual action of phosphoinositide depletion and proton release.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , 2,4-Dinitrofenol/farmacología , Animales , Línea Celular , Drosophila/efectos de los fármacos , Drosophila/efectos de la radiación , Proteínas de Drosophila/efectos de los fármacos , Proteínas de Drosophila/efectos de la radiación , Concentración de Iones de Hidrógeno , Fosfatidilinositoles/metabolismo , Fotones , Células Fotorreceptoras de Invertebrados/efectos de los fármacos , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/efectos de la radiación , Visión Ocular/fisiología
18.
Neuron ; 59(4): 596-607, 2008 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-18760696

RESUMEN

The Drosophila phototransduction cascade transforms light into depolarizations that are further shaped by activation of voltage-dependent K+ (Kv) channels. In whole-cell recordings of isolated photoreceptors, we show that light selectively modulated the delayed rectifier (Shab) current. Shab currents were increased by light with similar kinetics to the light-induced current itself (latency approximately 20 ms), recovering to control values with a t(1/2) of approximately 60 s in darkness. Genetic disruption of PLCbeta4, responsible for light-induced PIP(2) hydrolysis, abolished this light-dependent modulation. In mutants of CDP-diaclyglycerol synthase (cds(1)), required for PIP(2) resynthesis, the modulation became irreversible, but exogenously applied PIP(2) restored reversibility. The modulation was accurately and reversibly mimicked by application of PIP(2) to heterologously expressed Shab channels in excised inside-out patches. The results indicate a functionally implemented mechanism of Kv channel modulation by PIP(2) in photoreceptors, which enables light-dependent regulation of signal processing by direct coupling to the phototransduction cascade.


Asunto(s)
Proteínas de Drosophila/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Canales de Potasio Shab/metabolismo , Visión Ocular/fisiología , Animales , Diacilglicerol Colinafosfotransferasa/genética , Diacilglicerol Colinafosfotransferasa/metabolismo , Relación Dosis-Respuesta en la Radiación , Drosophila , Proteínas de Drosophila/efectos de la radiación , Luz , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfatidilinositol 4,5-Difosfato/efectos de la radiación , Fosfolipasa C beta/metabolismo , Canales de Potasio Shab/efectos de la radiación
19.
Neuron ; 59(5): 778-89, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18786361

RESUMEN

Phototransduction in flies is the fastest known G protein-coupled signaling cascade, but how this performance is achieved remains unclear. Here, we investigate the mechanism and role of rhodopsin inactivation. We determined the lifetime of activated rhodopsin (metarhodopsin = M( *)) in whole-cell recordings from Drosophila photoreceptors by measuring the time window within which inactivating M( *) by photoreisomerization to rhodopsin could suppress responses to prior illumination. M( *) was inactivated rapidly (tau approximately 20 ms) under control conditions, but approximately 10-fold more slowly in Ca2+-free solutions. This pronounced Ca2+ dependence of M( *) inactivation was unaffected by mutations affecting phosphorylation of rhodopsin or arrestin but was abolished in mutants of calmodulin (CaM) or the CaM-binding myosin III, NINAC. This suggests a mechanism whereby Ca2+ influx acting via CaM and NINAC accelerates the binding of arrestin to M( *). Our results indicate that this strategy promotes quantum efficiency, temporal resolution, and fidelity of visual signaling.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Rodopsina/metabolismo , Visión Ocular/fisiología , Factores de Edad , Animales , Animales Modificados Genéticamente , Arrestina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Mutación/fisiología , Cadenas Pesadas de Miosina/metabolismo , Técnicas de Placa-Clamp , Estimulación Luminosa/métodos , Células Fotorreceptoras de Invertebrados/efectos de los fármacos , Células Fotorreceptoras de Invertebrados/fisiología , Visión Ocular/efectos de los fármacos
20.
Am J Physiol Renal Physiol ; 291(6): F1369-76, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16788137

RESUMEN

The novel serine/threonine kinases (with no lysine kinases or WNKs), WNK1 and WNK4, are encoded by the disease genes for Gordon syndrome (PRKWNK1 and PRKWNK4), a rare monogenic syndrome of hypertension and hyperkalemia. These proteins alter the expression of the thiazide-sensitive Na/Cl cotransporter (NCCT) in Xenopus laevis oocytes, although the details are controversial. We describe here our own experience and confirm that kinase-dead WNK4 (318D>A) is unable to affect Na+ fluxes through the thiazide-sensitive Na/Cl transporter (NCCT) or its membrane expression as an ECFP-NCCT fusion protein. However, the kinase domain is not sufficient for a functional WNK4 since deletion of the acidic motif (a motif unique to WNK family members) completely abolishes functional activity. Indeed, the NH2 terminal of WNK4 (1-620) containing the kinase domain and acidic motif retains full activity, but does not interact directly with NCCT in pull-down assays. Coexpression of WNK1 antagonizes the action of WNK4, and kinase-dead WNK1 (368D>A) or WNK1 carrying a WNK4 disease mutation (565Q>E) behaves in the same way as wild-type WNK1. This suggests kinase activity and charge conservation within the acidic motif are not essential for the WNK1-WNK4 interaction. We also report that WNK4 probably reduces surface expression largely through an effect on forward trafficking. Hence, the effect of WNK4 on NCCT expression is mimicked by dynamin, but the dominant-negative K44A dynamin mutant does not block the action of WNK4 itself. These results further highlight important differences in the mechanism by which WNK kinases affect expression of NCCT vs. other membrane proteins such as ROMK.


Asunto(s)
Dinaminas/metabolismo , Endocitosis/fisiología , Riñón/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Animales , Biotinilación , Western Blotting , Eliminación de Gen , Aparato de Golgi/metabolismo , Riñón/citología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Antígenos de Histocompatibilidad Menor , Oocitos/citología , Oocitos/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Simportadores del Cloruro de Sodio/genética , Radioisótopos de Sodio , Proteína Quinasa Deficiente en Lisina WNK 1 , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA