Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(11): 1854-1866, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857825

RESUMEN

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4. Expression of apoE3 in microglia/CAMs improves cognitive function, increases microglia surrounding amyloid plaque and reduces amyloid pathology and associated toxicity, whereas apoE4 expression either compromises or has no effects on these outcomes by impairing lipid metabolism. Single-cell transcriptomic profiling reveals increased antigen presentation and interferon pathways upon apoE3 expression. In contrast, apoE4 expression downregulates complement and lysosomal pathways, and promotes stress-related responses. Moreover, in the presence of mouse endogenous apoE, microglial apoE4 exacerbates amyloid pathology. Finally, we observed a reduction in Lgals3-positive responsive microglia surrounding amyloid plaque and an increased accumulation of lipid droplets in APOE4 human brains and induced pluripotent stem cell-derived microglia. Our findings establish critical isoform-dependent effects of microglia/CAM-expressed apoE in brain function and the development of amyloid pathology, providing new insight into how apoE4 vastly increases AD risk.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Microglía/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo , Homeostasis , Ratones Transgénicos
2.
Alzheimers Dement ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031528

RESUMEN

INTRODUCTION: The apolipoprotein E gene (APOE) is an established central player in the pathogenesis of Alzheimer's disease (AD), with distinct apoE isoforms exerting diverse effects. apoE influences not only amyloid-beta and tau pathologies but also lipid and energy metabolism, neuroinflammation, cerebral vascular health, and sex-dependent disease manifestations. Furthermore, ancestral background may significantly impact the link between APOE and AD, underscoring the need for more inclusive research. METHODS: In 2023, the Alzheimer's Association convened multidisciplinary researchers at the "AAIC Advancements: APOE" conference to discuss various topics, including apoE isoforms and their roles in AD pathogenesis, progress in apoE-targeted therapeutic strategies, updates on disease models and interventions that modulate apoE expression and function. RESULTS: This manuscript presents highlights from the conference and provides an overview of opportunities for further research in the field. DISCUSSION: Understanding apoE's multifaceted roles in AD pathogenesis will help develop targeted interventions for AD and advance the field of AD precision medicine. HIGHLIGHTS: APOE is a central player in the pathogenesis of Alzheimer's disease. APOE exerts a numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The AAIC Advancements: APOE conference encouraged discussions and collaborations on understanding the role of APOE.

3.
BMC Nurs ; 23(1): 329, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755582

RESUMEN

BACKGROUND: Meeting people's needs is positively correlated with their recovery. However, recovery services rarely include nurse-led programs tailored to the needs of these people. This study aimed to evaluate the effectiveness of a new needs-tailored recovery program by using a cluster-randomized controlled trial design. METHODS: We conducted a parallel randomized controlled trial in two community psychiatric departments, employing nurse-level clustering for intervention delivery and selecting participants through convenience sampling. The participants were people diagnosed with schizophrenia that were receiving homecare services. The experimental group (n = 82) received needs-tailored recovery program for six months. The control group (n = 82) received traditional homecare. Data were collected at baseline, post-intervention, and the three-month follow-up (the study ran from February to December 2021). The outcomes were recovery, needs, hope, empowerment, psychotic symptoms, and medication adherence. We used repeated measures ANOVA tests to examine the effect of the group × time interaction. RESULTS: The participants in the experimental group demonstrated statistically significant improvements in recovery, hope, and medication adherence compared to the control group, both immediately post-intervention and at the three-month follow-up. Moreover, they exhibited statistically significant reductions in needs compared to the control group at the three-month follow-up (p < .05). While the interaction effect for psychotic symptoms was not significant, the time effect was significant (p < .05). No significant interaction or time effect was observed for empowerment. CONCLUSION: The findings increase our understanding of recovery-oriented care that prioritizes therapeutic alliance, integrated needs assessment, individual goals, hope, and empowerment. TRIAL REGISTRATION: The Clinicaltrials.gov identifier NCT05304780 retrospectively registered on 03/31/2022.

4.
Mol Biol Rep ; 49(12): 12007-12015, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36273336

RESUMEN

BACKGROUND: Interferon-gamma (IFN-γ) is an immune-derived cytokines in the innate and adaptive immune responses, and functions as a major pro-inflammatory cytokine. IFNγ has previously been reported involving in the regulation of bone metabolism. However, contradictory results about the roles of IFN-γ in bone formation or bone resorption have been reported. It is possible that the functions of IFN-γ in bone formation is dose-dependent or time-dependent. In this study we examined the effect of IFN-γ on different stages of osteoblastogenesis and bone formation. MATERIALS AND METHODS: Cell proliferation, gene expression and protein levels of the critical effectors involving in different stages of differentiation were compared between differentiating preosteoblast MC3T3-E1 treated with or without IFN-γ at different stages. Cell proliferation were determined by MTT assay. Expression levels of osteoblast differentiation markers was performed by quantitative PCR assay. Also, western blot was conducted to investigate the protein levels in those effectors. CONCLUSION: IFN-γ regulates osteoblast and bone formation in a stage-dependent manner. IFN-γ did not alter and the expression of critical osteogenic transcription factors, such as Runx2 and Cbfb, suggesting that the differentiation was not disrupted by IFN-γ. The cell number and the levels of matrix proteins, including COL1A and BSP, at both early and late stage of osteoblastogenesis were downregulated by IFN-γ, indicating its negative regulating roles in early stages. In contrast, the mineralization protein ALP and OCN was upregulated at late stages. The results suggested that IFN-γ might act as a negative regulator in osteoblast differentiation and bone formation at early stages but switch into positive regulator at late stage. Our data revealed the complex features of the effects of IFN-γ on osteoblast differentiation. The detailed mechanisms of how IFN-γ influence on the bone formation and balance of bone remodeling will be further studied.


Asunto(s)
Resorción Ósea , Osteogénesis , Humanos , Interferón gamma/farmacología , Interferón gamma/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos , Resorción Ósea/metabolismo , Remodelación Ósea , Diferenciación Celular
5.
Can J Infect Dis Med Microbiol ; 2022: 6441339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178135

RESUMEN

BACKGROUND: Increased studies have revealed that asymptomatic carriers substantially impact the epidemic and that asymptomatic transmission is very common. Therefore, the asymptomatic transmission threat to the spread of the pandemic should not be neglected. METHODS: The local outbreak in Taiwan, especially in Taipei City, is unprecedented and paramount and has claimed hundreds of lives, tens of thousands of cases, and enormous economic costs. As care providers and gatekeepers of infectious diseases, Taipei City Hospital has to perform regular polymerase chain reaction (PCR) results of admitted patients and healthcare workers (HCWs) to achieve these goals. RESULTS: In this study, the results revealed a low positive rate of less than 1%, but the asymptomatic proportions could range from 42% to 46%, which bolsters that systematic screening was effective in controlling coronavirus disease-19 (COVID-19) of Novel Coronavirus or Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) and might be an exemplar to other similar scenarios. Universal screening of admitted patients may be important and necessary, especially in asymptomatic patients. CONCLUSIONS: Regular screening for healthcare providers is also important during this pandemic, and it is recommended that admitted patients and healthcare providers undergo systemic PCR testing.

6.
Acta Neuropathol ; 142(5): 807-825, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453582

RESUMEN

APOE4 is a strong genetic risk factor for Alzheimer's disease and Dementia with Lewy bodies; however, how its expression impacts pathogenic pathways in a human-relevant system is not clear. Here using human iPSC-derived cerebral organoid models, we find that APOE deletion increases α-synuclein (αSyn) accumulation accompanied with synaptic loss, reduction of GBA levels, lipid droplet accumulation and dysregulation of intracellular organelles. These phenotypes are partially rescued by exogenous apoE2 and apoE3, but not apoE4. Lipidomics analysis detects the increased fatty acid utilization and cholesterol ester accumulation in apoE-deficient cerebral organoids. Furthermore, APOE4 cerebral organoids have increased αSyn accumulation compared to those with APOE3. Carrying APOE4 also increases apoE association with Lewy bodies in postmortem brains from patients with Lewy body disease. Our findings reveal the predominant role of apoE in lipid metabolism and αSyn pathology in iPSC-derived cerebral organoids, providing mechanistic insights into how APOE4 drives the risk for synucleinopathies.


Asunto(s)
Apolipoproteínas E/metabolismo , Metabolismo de los Lípidos/fisiología , Organoides/patología , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Animales , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Organoides/metabolismo , Isoformas de Proteínas/metabolismo , Sinucleinopatías/patología
7.
FASEB J ; 34(8): 10984-10997, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32613609

RESUMEN

Mutation of Triggering receptor expressed on myeloid cells 2 (TREM2) impairs the response of microglia to amyloid-ß (Aß) pathology in Alzheimer's disease (AD), although the mechanism governing TREM2-regulated microglia recruitment to Aß plaques remains unresolved. Here, we confirm that TREM2 mutation attenuates microglial migration. Then, using Trem2-/- mice and an R47H variant mouse model for AD generated for this study, we show that TREM2 deficiency or the AD-associated R47H mutation results in inhibition of FAK and Rac1/Cdc42-GTPase signaling critical for cell migration. Intriguingly, treatment with CN04, a Rac1/Cdc42-GTPase activator, partially enhances microglial migration in response to oligomeric Aß42 in Trem2-/- or R47H microglia both in vitro and in vivo. Our study shows that the dysfunction of microglial migration in the AD-associated TREM2 R47H variant is caused by FAK/Rac1/Cdc42 signaling disruption, and that activation of this signaling ameliorates impaired microglial migration response to Aß42 , suggesting a therapeutic target for R47H-bearing patients with high risk of AD.


Asunto(s)
Péptidos beta-Amiloides/genética , Movimiento Celular/genética , Quinasa 1 de Adhesión Focal/genética , GTP Fosfohidrolasas/genética , Microglía/patología , Células Mieloides/metabolismo , Neuropéptidos/genética , Fragmentos de Péptidos/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Células Cultivadas , Modelos Animales de Enfermedad , Mutación con Pérdida de Función/genética , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Células Mieloides/patología , Transducción de Señal/genética
8.
Int J Med Sci ; 18(10): 2137-2145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859520

RESUMEN

Previous studies demonstrated that resveratrol (RES) is able to enhance antioxidant, anti-inflammatory and insulin actions in humans. It is unclear whether RES can be used as ergogenic aids to enhance high-intensity cycling exercise performance and attenuate the high-intensity exercise-induced oxidative stress and inflammation. This study investigated the effect of RES supplementation on oxidative stress, inflammation, exercise-induced fatigue, and endurance performance. Eight male athletes participated in this single-blind crossover designed study and randomly instructed to receive four days of either oral RES (480 mg per day, totally 1920mg) or placebo supplementation. The cycling exercise challenge at 80% maximal oxygen consumption with 60 rpm was performed following 4 days of either RES or placebo supplementation. The total cycling performance time was recorded. In addition, blood samples were obtained to analyze the changes in blood glucose, plasma non-esterified fatty acid, serum lactate dehydrogenase, creatine kinase, uric acid, total antioxidant capacity, malondialdehyde, tumor necrosis factor-α, and interleukin-6. The exhausting time of cycling exercise challenge was not significantly increased in RES compared to that in placebo. However, IL-6 response was significantly decreased during exercise challenge in RES trial, and there were no differences in blood biomarkers, fatigue factors, and antioxidative response. Oral RES supplementation can attenuate exercise-induced IL-6 response but not fatigue and oxidative stress, inflammation response. However, we infer that 4-day oral RES supplementation has no ergogenic property on enhancing the high-intensity cycling exercise performance.


Asunto(s)
Ciclismo/fisiología , Fatiga/diagnóstico , Interleucina-6/sangre , Sustancias para Mejorar el Rendimiento/administración & dosificación , Resveratrol/administración & dosificación , Administración Oral , Adolescente , Atletas , Rendimiento Atlético/fisiología , Estudios Cruzados , Fatiga/sangre , Fatiga/inmunología , Fatiga/prevención & control , Humanos , Inflamación/sangre , Inflamación/inmunología , Inflamación/prevención & control , Interleucina-6/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Método Simple Ciego , Resultado del Tratamiento , Adulto Joven
9.
BMC Public Health ; 21(1): 594, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33765974

RESUMEN

BACKGROUND: The relationship between sleep duration and physical fitness is one aspect of sleep health. Potential factors associated with sleep duration interfere with physical fitness performance, but the impact trends on physical fitness indicators remain unclear. METHODS: This study examined associations between sleep duration and physical fitness among young to middle-aged adults in Taiwan. A total of 42,781 Taiwanese adults aged 23-45 participated in the National Physical Fitness Examination Survey 2013 (NPFES-2013) in Taiwan between October 2013 and March 2014. A standardized structural questionnaire was used to record participants' sleep duration, which was stratified as short (< 6 h/day (h/d)), moderate (6-7 h/d; 7-8 h/d; 8-9 h), and long (≥ 9 h/d) sleep duration groups. Physical fitness was assessed based on four components: body composition (body mass index [BMI], waist-to-height ratio [WHtR], and waist-to-hip ratio [WHR]), muscle strength and endurance (1-min bent-leg sit-up test [BS]), flexibility (sit-and-reach test [SR]), and cardiorespiratory endurance index (3-min step test [CEI]). RESULTS: By using analysis of covariance (ANCOVA), after sex grouping and age adjustment, we observed that sleep duration was significantly associated with obesity, functional fitness, and self-perception of health. The sleep duration for low obesity-related values (BMI, WHtR, and WHR) for men was 7-9 h/d, and that for women was 7-8 h/d. Sleeping more than 8 h/d showed poor functional fitness performances (BS and SR). For both sexes, sleep duration of 8-9 h/d was the optimal sleep duration for self-perceptions of health. CONCLUSIONS: Our research found that there were wide and different associations of sleep duration with physical fitness and self-perception of health among Taiwanese adults aged 23-45, and there were differences in these associated manifestations between men and women. This study could be of great importance in regional public health management in Taiwan, and provide inspirations for clinical research on physical fitness.


Asunto(s)
Aptitud Física , Autoimagen , Adulto , Índice de Masa Corporal , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sueño , Taiwán/epidemiología , Adulto Joven
10.
Hum Mol Genet ; 27(2): 211-223, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29040522

RESUMEN

It is clear that innate immune system status is altered in numerous neurodegenerative diseases. Human genetic studies have demonstrated that triggering receptor expressed in myeloid cells 2 (TREM2) coding variants have a strong association with Alzheimer's disease (AD) and other neurodegenerative diseases. To more thoroughly understand the impact of TREM2 in vivo, we studied the behavioral and cognitive functions of wild-type (WT) and Trem2-/- (KO) mice during basal conditions and brain function in the context of innate immune stimulation with peripherally administered lipopolysaccharide (LPS). Early markers of neuroinflammation preceded Aif1 and Trem2 upregulation that occurred at later stages (24-48 h post-LPS). We performed a transcriptomic study of these cohorts and found numerous transcripts and pathways that were altered in Trem2-/- mice both at baseline and 48 h after LPS challenge. Importantly, our transcriptome analysis revealed that our Trem2-/- mouse line (Velocigene allele) results in exaggerated Treml1 upregulation. In contrast, aberrantly high Treml1 expression was absent in the Trem2 knockout line generated by the Colonna lab and the Jackson Labs CRISPR/Cas9 Trem2 knockout line. Notably, removal of the floxed neomycin selection cassette ameliorated aberrant Treml1 expression, validating the artifactual nature of Treml1 expression in the original Trem2-/- Velocigene line. Clearly further studies are needed to decipher whether the Treml1 transcriptional artifact is functionally meaningful, but our data indicate that caution is warranted when interpreting functional studies with this particular line. Additionally, our results indicate that other Velocigene alleles or targeting strategies with strong heterologous promoters need to carefully consider downstream genes.


Asunto(s)
Conducta Animal/fisiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Animales , Encéfalo/metabolismo , Cognición/fisiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Transcriptoma , Regulación hacia Arriba
11.
Proc Natl Acad Sci U S A ; 114(33): E6962-E6971, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28701379

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid-ß (Aß) peptide deposition in brain parenchyma as plaques and in cerebral blood vessels as cerebral amyloid angiopathy (CAA). CAA deposition leads to several clinical complications, including intracerebral hemorrhage. The underlying molecular mechanisms that regulate plaque and CAA deposition in the vast majority of sporadic AD patients remain unclear. The clusterin (CLU) gene is genetically associated with AD and CLU has been shown to alter aggregation, toxicity, and blood-brain barrier transport of Aß, suggesting it might play a key role in regulating the balance between Aß deposition and clearance in both brain and blood vessels. Here, we investigated the effect of CLU on Aß pathology using the amyloid precursor protein/presenilin 1 (APP/PS1) mouse model of AD amyloidosis on a Clu+/+ or Clu-/- background. We found a marked decrease in plaque deposition in the brain parenchyma but an equally striking increase in CAA within the cerebrovasculature of APP/PS1;Clu-/- mice. Surprisingly, despite the several-fold increase in CAA levels, APP/PS1;Clu-/- mice had significantly less hemorrhage and inflammation. Mice lacking CLU had impaired clearance of Aß in vivo and exogenously added CLU significantly prevented Aß binding to isolated vessels ex vivo. These findings suggest that in the absence of CLU, Aß clearance shifts to perivascular drainage pathways, resulting in fewer parenchymal plaques but more CAA because of loss of CLU chaperone activity, complicating the potential therapeutic targeting of CLU for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Clusterina/deficiencia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/patología , Modelos Animales de Enfermedad , Ratones , Ratones Mutantes
12.
Alzheimers Dement ; 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33090691

RESUMEN

INTRODUCTION: The cytoprotective PTEN-induced kinase 1 (PINK1)-parkin RBR E3 ubiquitin protein ligase (PRKN) pathway selectively labels damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) for their autophagic removal (mitophagy). Because dysfunctions of mitochondria and degradation pathways are early features of Alzheimer's disease (AD), mitophagy impairments may contribute to the pathogenesis. METHODS: Morphology, levels, and distribution of the mitophagy tag pS65-Ub were evaluated by biochemical analyses combined with tissue and single cell imaging in AD autopsy brain and in transgenic mouse models. RESULTS: Analyses revealed significant increases of pS65-Ub levels in AD brain, which strongly correlated with granulovacuolar degeneration (GVD) and early phospho-tau deposits, but were independent of amyloid beta pathology. Single cell analyses revealed predominant co-localization of pS65-Ub with mitochondria, GVD bodies, and/or lysosomes depending on the brain region analyzed. DISCUSSION: Our study highlights mitophagy alterations in AD that are associated with early tau pathology, and suggests that distinct mitochondrial, autophagic, and/or lysosomal failure may contribute to the selective vulnerability in disease.

13.
Alzheimers Dement ; 16(10): 1372-1383, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827351

RESUMEN

INTRODUCTION: Cerebrovascular pathologies including cerebral amyloid angiopathy (CAA) and blood-brain barrier (BBB) dysregulation are prominent features in the majority of Alzheimer's disease (AD) cases. METHODS: We performed neuropathologic and biochemical studies on a large, neuropathologically confirmed human AD cohort (N = 469). Amounts of endothelial tight junction proteins claudin-5 (CLDN5) and occludin (OCLN), and major AD-related molecules (amyloid beta [Aß40], Aß42, tau, p-tau, and apolipoprotein E) in the temporal cortex were assessed by ELISA. RESULTS: Higher levels of soluble tau, insoluble p-tau, and apolipoprotein E (apoE) were independently correlated with lower levels of endothelial tight junction proteins CLDN5 and OCLN in AD brains. Although high Aß40 levels, APOE ε4, and male sex were predominantly associated with exacerbated CAA severity, those factors did not influence tight junction protein levels. DISCUSSION: Refining the molecular mechanisms connecting tau, Aß, and apoE with cerebrovascular pathologies is critical for greater understanding of AD pathogenesis and establishing effective therapeutic interventions for the disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Angiopatía Amiloide Cerebral , Uniones Estrechas/patología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
14.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934555

RESUMEN

Apolipoprotein E (apoE) is linked to the risk for Alzheimer's disease (AD) and thus has been suggested to be an important therapeutic target. In our drug screening effort, we identified Ondansetron (OS), an FDA-approved 5-HT3 antagonist, as an apoE-modulating drug. OS at low micromolar concentrations significantly increased apoE secretion from immortalized astrocytes and primary astrocytes derived from apoE3 and apoE4-targeted replacement mice without generating cellular toxicity. Other 5-HT3 antagonists also had similar effects as OS, though their effects were milder and required higher concentrations. Antagonists for other 5-HT receptors did not increase apoE secretion. OS also increased mRNA and protein levels of the ATB-binding cassette protein A1 (ABCA1), which is involved in lipidation and secretion of apoE. Accordingly, OS increased high molecular weight apoE. Moreover, the liver X receptor (LXR) and ABCA1 antagonists blocked the OS-induced increase of apoE secretion, indicating that the LXR-ABCA1 pathway is involved in the OS-mediated facilitation of apoE secretion from astrocytes. The effects of OS on apoE and ABCA1 were also observed in human astrocytes derived from induced pluripotent stem cells (iPSC) carrying the APOE ε3/ε3 and APOE ε4/ε4 genotypes. Oral administration of OS at clinically-relevant doses affected apoE levels in the liver, though the effects in the brain were not observed. Collectively, though further studies are needed to probe its effects in vivo, OS could be a potential therapeutic drug for AD by modulating poE metabolism through the LXR-ABCA1 pathway.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteínas E/metabolismo , Receptores X del Hígado/metabolismo , Ondansetrón/farmacología , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Animales , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Astrocitos/metabolismo , Células Cultivadas , Humanos , Masculino , Ratones Transgénicos
15.
J Neurosci ; 37(15): 4023-4031, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28275161

RESUMEN

Accumulation and deposition of amyloid-ß (Aß) in the brain represent an early and perhaps necessary step in the pathogenesis of Alzheimer's disease (AD). Aß accumulation leads to the formation of Aß aggregates, which may directly and indirectly lead to eventual neurodegeneration. While Aß production is accelerated in many familial forms of early-onset AD, increasing evidence indicates that impaired clearance of Aß is more evident in late-onset AD. To uncover the mechanisms underlying impaired Aß clearance in AD, we examined the role of low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. Although LRP1 has been shown to play critical roles in brain Aß metabolism in neurons and vascular mural cells, its role in astrocytes, the most abundant cell type in the brain responsible for maintaining neuronal homeostasis, remains unclear. Here, we show that astrocytic LRP1 plays a critical role in brain Aß clearance. LRP1 knockdown in primary astrocytes resulted in decreased cellular Aß uptake and degradation. In addition, silencing of LRP1 in astrocytes led to downregulation of several major Aß-degrading enzymes, including matrix metalloproteases MMP2, MMP9, and insulin-degrading enzyme. More important, conditional knock-out of the Lrp1 gene in astrocytes in the background of APP/PS1 mice impaired brain Aß clearance, exacerbated Aß accumulation, and accelerated amyloid plaque deposition without affecting its production. Together, our results demonstrate that astrocytic LRP1 plays an important role in Aß metabolism and that restoring LRP1 expression and function in the brain could be an effective strategy to facilitate Aß clearance and counter amyloid pathology in AD.SIGNIFICANCE STATEMENT Astrocytes represent a major cell type regulating brain homeostasis; however, their roles in brain clearance of amyloid-ß (Aß) and underlying mechanism are not clear. In this study, we used both cellular models and conditional knock-out mouse models to address the role of a critical Aß receptor, the low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. We found that LRP1 in astrocytes plays a critical role in brain Aß clearance by modulating several Aß-degrading enzymes and cellular degradation pathways. Our results establish a critical role of astrocytic LRP1 in brain Aß clearance and shed light on specific Aß clearance pathways that may help to establish new targets for AD prevention and therapy.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Receptores de LDL/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Astrocitos/patología , Encéfalo/patología , Células Cultivadas , Femenino , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Masculino , Ratones , Ratones Noqueados
16.
J Neurosci ; 37(7): 1772-1784, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28077724

RESUMEN

Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which is expressed on myeloid cells including microglia in the CNS, has recently been identified as a risk factor for Alzheimer's disease (AD). TREM2 transmits intracellular signals through its transmembrane binding partner DNAX-activating protein 12 (DAP12). Homozygous mutations inactivating TREM2 or DAP12 lead to Nasu-Hakola disease; however, how AD risk-conferring variants increase AD risk is not clear. To elucidate the signaling pathways underlying reduced TREM2 expression or loss of function in microglia, we respectively knocked down and knocked out the expression of TREM2 in in vitro and in vivo models. We found that TREM2 deficiency reduced the viability and proliferation of primary microglia, reduced microgliosis in Trem2-/- mouse brains, induced cell cycle arrest at the G1/S checkpoint, and decreased the stability of ß-catenin, a key component of the canonical Wnt signaling pathway responsible for maintaining many biological processes, including cell survival. TREM2 stabilized ß-catenin by inhibiting its degradation via the Akt/GSK3ß signaling pathway. More importantly, treatment with Wnt3a, LiCl, or TDZD-8, which activates the ß-catenin-mediated Wnt signaling pathway, rescued microglia survival and microgliosis in Trem2-/- microglia and/or in Trem2-/- mouse brain. Together, our studies demonstrate a critical role of TREM2-mediated Wnt/ß-catenin pathway in microglial viability and suggest that modulating this pathway therapeutically may help to combat the impaired microglial survival and microgliosis associated with AD.SIGNIFICANCE STATEMENT Mutations in the TREM2 (Triggering Receptor Expressed on Myeloid cells 2) gene are associated with increased risk for Alzheimer's disease (AD) with effective sizes comparable to that of the apolipoprotein E (APOE) ε4 allele, making it imperative to understand the molecular pathway(s) underlying TREM2 function in microglia. Our findings shed new light on the relationship between TREM2/DNAX-activating protein 12 (DAP12) signaling and Wnt/ß-catenin signaling and provide clues as to how reduced TREM2 function might impair microglial survival in AD pathogenesis. We demonstrate that TREM2 promotes microglial survival by activating the Wnt/ß-catenin signaling pathway and that it is possible to restore Wnt/ß-catenin signaling when TREM2 activity is disrupted or reduced. Therefore, we demonstrate the potential for manipulating the TREM2/ß-catenin signaling pathway for the treatment of AD.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Receptores Inmunológicos/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Animales Recién Nacidos , Encéfalo/citología , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Ácido Kaínico/farmacología , Cloruro de Litio/farmacología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Proteolisis/efectos de los fármacos , Receptores Inmunológicos/genética , Tiadiazoles/farmacología , Vía de Señalización Wnt/efectos de los fármacos
17.
Hum Mol Genet ; 25(16): 3467-3475, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27378688

RESUMEN

Although abundant genetic and biochemical evidence strongly links Clusterin (CLU) to Alzheimer disease (AD) pathogenesis, the receptor for CLU within the adult brain is currently unknown. Using unbiased approaches, we identified Plexin A4 (PLXNA4) as a novel, high-affinity receptor for CLU in the adult brain. PLXNA4 protein expression was high in brain with much lower levels in peripheral organs. CLU protein levels were significantly elevated in the cerebrospinal fluid (CSF) of Plxna4-/- mice and, in humans, CSF levels of CLU were also associated with PLXNA4 genotype. Human AD brains had significantly increased the levels of CLU protein but decreased levels of PLXNA4 by ∼50%. To determine whether PLXNA4 levels influenced cognition, we analyzed the behaviour of Plxna4+/+, Plxna4+/-, and Plxna4-/- mice. In comparison to WT controls, both Plxna4+/- and Plxna4-/- mice were hyperactive in the open field assay while Plxna4-/- mice displayed a hyper-exploratory (low-anxiety phenotype) in the elevated plus maze. Importantly, both Plxna4+/- and Plxna4-/- mice displayed prominent deficits in learning and memory in the contextual fear-conditioning paradigm. Thus, even a 50% reduction in the level of PLXNA4 is sufficient to cause memory impairments, raising the possibility that memory problems seen in AD patients could be due to reductions in the level of PLXNA4. Both CLU and PLXNA4 have been genetically associated with AD risk and our data thus provide a direct relationship between two AD risk genes. Our data suggest that increasing the levels of PLXNA4 or targeting CLU-PLXNA4 interactions may have therapeutic value in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Clusterina/genética , Mapas de Interacción de Proteínas/genética , Receptores de Superficie Celular/genética , Enfermedad de Alzheimer/fisiopatología , Animales , Clusterina/biosíntesis , Cognición/fisiología , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Memoria/fisiología , Ratones , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/biosíntesis , Factores de Riesgo
18.
Int J Neuropsychopharmacol ; 21(10): 910-917, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060048

RESUMEN

Background: There is no countable biomarker for opioid dependence treatment responses thus far. In this study, we recruited Taiwanese methadone maintenance treatment patients to search for genes involving the regulatory mechanisms of methadone dose by genome-wide association analyses. Methods: A total of 344 Taiwanese methadone maintenance treatment patients were included in a genome-wide association study. The involvement of GRK5 in opioid dependence was then further confirmed by gene expression study on lymphoblastoid cell lines derived from 3 independent age- and gender-matched groups: methadone maintenance treatment patients, medication-free former heroin abusers, and normal controls. Results: The results indicated that GRK5, the gene encoding an enzyme related to µ-opioid receptor desensitization, is associated with methadone dose by additive model of gene-based association analysis (P=6.76×10-5). We found that 6 of the 55 single nucleotide polymorphisms from the genome-wide genotype platform and 2 single nucleotide polymorphisms from the 29 additionally selected single nucleotide polymorphisms were significantly associated with methadone maintenance dose in both genotype and allele type (P ≤ .006), especially in patients who tested negative in the urine morphine test. The levels of GRK5 gene expression were similar between methadone maintenance treatment patients and medication-free former heroin abusers. However, the normal controls showed a significantly lower level of GRK5 gene expression than the other groups (P=.019). Conclusions: The results suggested an important role for GRK5 in the regulatory mechanisms of methadone dose and course of heroin dependence.


Asunto(s)
Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Dependencia de Heroína/genética , Metadona/uso terapéutico , Adulto , Estudios de Casos y Controles , Estudios Transversales , Femenino , Quinasa 5 del Receptor Acoplado a Proteína-G/biosíntesis , Expresión Génica , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Dependencia de Heroína/tratamiento farmacológico , Humanos , Masculino , Tratamiento de Sustitución de Opiáceos/métodos , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
19.
J Neurosci ; 36(13): 3848-59, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27030769

RESUMEN

In Alzheimer's disease (AD), the accumulation and deposition of amyloid-ß (Aß) peptides in the brain is a central event. Aß is cleaved from amyloid precursor protein (APP) by ß-secretase and γ-secretase mainly in neurons. Although mutations inAPP,PS1, orPS2cause early-onset familial AD,ABCA7encoding ATP-binding cassette transporter A7 is one of the susceptibility genes for late-onset AD (LOAD), in which itsloss-of-functionvariants increase the disease risk. ABCA7 is homologous to a major lipid transporter ABCA1 and is highly expressed in neurons and microglia in the brain. Here, we show that ABCA7 deficiency altered brain lipid profile and impaired memory in ABCA7 knock-out (Abca7(-/-)) mice. When bred to amyloid model APP/PS1 mice, plaque burden was exacerbated by ABCA7 deficit.In vivomicrodialysis studies indicated that the clearance rate of Aß was unaltered. Interestingly, ABCA7 deletion facilitated the processing of APP to Aß by increasing the levels of ß-site APP cleaving enzyme 1 (BACE1) and sterol regulatory element-binding protein 2 (SREBP2) in primary neurons and mouse brains. Knock-down of ABCA7 expression in neurons caused endoplasmic reticulum stress highlighted by increased level of protein kinase R-like endoplasmic reticulum kinase (PERK) and increased phosphorylation of eukaryotic initiation factor 2α (eIF2α). In the brains of APP/PS1;Abca7(-/-)mice, the level of phosphorylated extracellular regulated kinase (ERK) was also significantly elevated. Together, our results reveal novel pathways underlying the association of ABCA7 dysfunction and LOAD pathogenesis. SIGNIFICANCE STATEMENT: Gene variants inABCA7encoding ATP-binding cassette transporter A7 are associated with the increased risk for late-onset Alzheimer's disease (AD). Importantly, we found the altered brain lipid profile and impaired memory in ABCA7 knock-out mice. The accumulation of amyloid-ß (Aß) peptides cleaved from amyloid precursor protein (APP) in the brain is a key event in AD pathogenesis and we also found that ABCA7 deficit exacerbated brain Aß deposition in amyloid AD model APP/PS1 mice. Mechanistically, we found that ABCA7 deletion facilitated the processing of APP and Aß production by increasing the levels of ß-secretase 1 (BACE1) in primary neurons and mouse brains without affecting the Aß clearance rate in APP/PS1 mice. Our study demonstrates a novel mechanism underlying how dysfunctions of ABCA7 contribute to the risk for AD.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/deficiencia , Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos/genética , Masculino , Trastornos de la Memoria/genética , Ratones , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA