Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 24(1): 474, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097965

RESUMEN

With new advances in next generation sequencing (NGS) technology at reduced costs, research on bacterial genomes in the environment has become affordable. Compared to traditional methods, NGS provides high-throughput sequencing reads and the ability to identify many species in the microbiome that were previously unknown. Numerous bioinformatics tools and algorithms have been developed to conduct such analyses. However, in order to obtain biologically meaningful results, the researcher must select the proper tools and combine them to construct an efficient pipeline. This complex procedure may include tens of tools, each of which require correct parameter settings. Furthermore, an NGS data analysis involves multiple series of command-line tools and requires extensive computational resources, which imposes a high barrier for biologists and clinicians to conduct NGS analysis and even interpret their own data. Therefore, we established a public gut microbiome database, which we call Twnbiome, created using healthy subjects from Taiwan, with the goal of enabling microbiota research for the Taiwanese population. Twnbiome provides users with a baseline gut microbiome panel from a healthy Taiwanese cohort, which can be utilized as a reference for conducting case-control studies for a variety of diseases. It is an interactive, informative, and user-friendly database. Twnbiome additionally offers an analysis pipeline, where users can upload their data and download analyzed results. Twnbiome offers an online database which non-bioinformatics users such as clinicians and doctors can not only utilize to access a control set of data, but also analyze raw data with a few easy clicks. All results are customizable with ready-made plots and easily downloadable tables. Database URL: http://twnbiome.cgm.ntu.edu.tw/ .


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Biología Computacional/métodos , Algoritmos , Bases de Datos Factuales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos
2.
Comput Biol Med ; 145: 105416, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35313206

RESUMEN

BACKGROUND: Taxonomic assignment is a vital step in the analytic pipeline of bacterial 16S ribosomal RNA (rRNA) sequencing. Over the past decade, most research in this field used next-generation sequencing technology to target V3∼V4 regions to analyze bacterial composition. However, focusing on only one or two hypervariable regions limited the taxonomic resolution to the species level. In recent years, third-generation sequencing technology has allowed researchers to easily access full-length prokaryotic 16S sequences and presented an opportunity to attain greater taxonomic depth. However, the accuracy of current taxonomic classifiers in analyzing 16S full-length sequence analysis remains unclear. OBJECTIVE: The purpose of this study is to compare the accuracy of several widely-used 16S sequence classifiers and to indicate the most suitable 16S training dataset for each classifier. METHODS: Both curated 16S full-length sequences and cross-validation datasets were used to validate the performance of seven classifiers, including QIIME2, mothur, SINTAX, SPINGO, Ribosomal Database Project (RDP), IDTAXA, and Kraken2. Different sequence training datasets, such as SILVA, Greengenes, and RDP, were used to train the classification models. RESULTS: The accuracy of each classifier to the species levels were illustrated. According to the experimental results, using RDP sequences as the training data, SINTAX and SPINGO provided the highest accuracy, and were recommended for the task of classifying prokaryotic 16S full-length rRNA sequences. CONCLUSION: The performance of the classifiers was affected by sequence training datasets. Therefore, different classifiers should use the most suitable 16S training data to improve the accuracy and taxonomy resolution in the taxonomic assignment.


Asunto(s)
Bacterias , Secuenciación de Nucleótidos de Alto Rendimiento , Bacterias/genética , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA