Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 245: 118078, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159665

RESUMEN

Highly efficient resource recycling and comprehensive utilization play a crucial role in achieving the goal of reducing resource wasting, environmental protection, and achieving goal of sustainable development. In this work, the two kinds waste resources of agricultural rice husk and metal ions (Co, Ni, and Mn) from spent lithium-ion batteries have been skillfully utilized to synthesize novel Fenton-like catalysts. Desiliconized rice husk carbon (DRHC) with rich pore structure and large specific surface area from rice husk has been prepared and used as scalable carrier, and dandelion-like nanoparticles cluster could be grown in situ on the surface of the carrier by using metal ions contained waste water. The designed catalysts (X@DRHC) as well as their preparation process were characterized in detail by SEM, TEM, BET, XRD and XPS, respectively. Meanwhile, their catalytic abilities were also studied by activating potassium peroxomonosulfate (PMS) to remove methylene blue (MB). The results indicate X@DRHC displays excellent degradation efficiency on MB with wide pH range and stable reusability, which is suitable for the degradation of various dyes. This work has realized the recycling and high-value utilization of waste resources from biomass and spent lithium-ion batteries, which not only creates an efficient way to dispose waste resources, but also shows high economic benefits in large-scale water treatment.


Asunto(s)
Litio , Oryza , Peróxidos , Carbono , Metales , Reciclaje/métodos , Suministros de Energía Eléctrica , Iones
2.
Materials (Basel) ; 17(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38541515

RESUMEN

Plastic pollution, particularly microplastic (MP) and nanoplastic (NP) pollution, has become a significant concern. This study explores the use of porous wood for filtration to remove MPs and NPs and investigates their removal mechanisms. Undecorated fir wood with a thickness of 4 mm achieves a 91% removal rate for model polystyrene (PS) MPs (2.6 µm) at a water flux of 198 L/m2h. However, its separation performance for NPs (255.8 and 50.9 nm) is poor. It also shows that fir wood (coniferous wood) has a higher PS removal rate than poplar wood (hard wood). With poly dimethyl diallyl ammonium chloride (PDDA) modification, both MPs and NPs are effectively removed, with NPs' removal rate increasing from <10% to 90% for PDDA/wood. Characterization results reveal that size-exclusive interception dominates for micron-sized particles, and electrostatic interaction is crucial for nanosized particles. Additionally, intercepted NPs have been used as a strong binder for hot-pressed wood to remarkably enhance the mechanical properties of wood, suggesting a novel recycle utilization of discarded wood filters. Overall, this renewable wood material offers a simple solution for tackling MP/NP pollution.

3.
Materials (Basel) ; 17(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730920

RESUMEN

Membrane emulsification technology has garnered increasing interest in emulsion preparation due to controllable droplet size, narrower droplet size distribution, low energy consumption, simple process design and excellent reproducibility. Nevertheless, the pore structure and surface engineering in membrane materials design play a crucial role in achieving high-quality emulsions with high throughput simultaneously. In this work, an oriented interpenetrating capillary network composed of highly aligned and interconnected wood cell lumens has been utilized to fabricate an emulsion membrane. A novel honeycomb porous ZnO layer obtained by a seed prefabrication-hydrothermal growth method was designed to reconstruct wood channel surfaces for enhanced microfluid mixing. The results show that through the unique capillary mesh microstructure of wood, the emulsion droplets were smaller in size, had narrower pore-size distribution, and were easy to obtain under high throughput conditions. Meanwhile, a well-designed ZnO layer could further improve the emulsion quality of a wood membrane, while the emulsifying throughput is still maintained at a higher level. This demonstrates that the convection process of the microfluid in these wood capillary channels was intensified markedly. This study not only develops advanced membrane materials in emulsion preparation, but also introduces a brand-new field for functional applications of wood.

4.
ACS Nano ; 18(32): 21491-21503, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39082107

RESUMEN

Hard carbon (HC) is a promising anode material for sodium-ion batteries. However, the intrinsic relationship between the closed pores/surface groups and sodium storage performance has been unclear, leading to difficulties in targeted regulation. In this study, renewable tannin extracts were used as raw materials to prepare HC anodes with abundant tunable closed pores and carbonyl groups through a pyrolytic modulation strategy. Combining ex situ characterizations reveals that closed pores and carbonyl groups are regulated by the pyrolytic process. Further, it is demonstrated that the plateau region is mainly contributed by the closed pores; highly stable fluorine-rich solid electrolyte interphase compositions are produced through carbonyl-induced interfacial catalysis. The optimized HC anode displays good cycling stability, exhibiting a high reversible capacity (360.96 mAh g-1) at 30 mA g-1 and capacity retention of up to 94% after 500 cycles at 1 A g-1. Moreover, the full battery assembled with Na3V2(PO4)3/C demonstrates a stable cycling performance. These findings provide a fresh knowledge of the structural design of high-performance HC anode materials and the mechanism of sodium storage in HC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA