Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Arch Microbiol ; 205(12): 371, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930433

RESUMEN

To address the growing health threat posed by drug-resistant pathogenic microorganisms, the development of novel antimicrobial medications with multiple mechanisms of action is in urgent demand. With traditional antibacterial drug resources challenging to push forward, developing new antibacterial drugs has become a hot spot in biomedical research. In this study, we tested the antibacterial activity of 119 phenanthridine derivatives via the antibacterial assay and obtained 5 candidates. The cytotoxicity assay showed one phenanthridine derivative, HCK20, was safe for mammalian cells below 125 µM. HCK20 was verified to possess significant antibacterial activity to Streptococcus spp., such as Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus equi with MICs ranging from 15 to 60 µM. Furthermore, we found that HCK20 probably achieved its bacterial inhibition by influencing the permeability of bacterial cell walls via interacting with Streptococcal penicillin-binding proteins (PBPs). Our results suggest that this phenanthridine derivative, HCK20, has great potential to become a novel antibacterial agent that can be a potent treatment for streptococcal infections.


Asunto(s)
Fenantrenos , Streptococcus suis , Animales , Antibacterianos/farmacología , Fenantridinas/farmacología , Mamíferos
2.
Vet Res ; 54(1): 83, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759250

RESUMEN

The LuxS quorum sensing system is a widespread system employed by many bacteria for cell-to-cell communication. The luxS gene has been demonstrated to play a crucial role in intramacrophage survival of piscine Streptococcus agalactiae, but the underlying mechanism remains largely unknown. In this study, transcriptome analysis, followed by the luxS gene deletion and subsequent functional studies, confirmed that impaired bacterial survival inside macrophages due to the inactivation of luxS was associated with reduced transcription of the fruRKI operon, encoding the fructose-specific phosphotransferase system. Further, luxS was determined not to enhance the transcription of fruRKI operon by binding its promoter, but to upregulate the expression of this operon via affecting the binding ability of catabolite control protein A (CcpA) to the catabolite responsive element (cre) in the promoter of fruRKI. Collectively, our study identifies a novel and previously unappreciated role for luxS in bacterial intracellular survival, which may give a more thorough understanding of the immune evasion mechanism in S. agalactiae.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Streptococcus agalactiae , Animales , Streptococcus agalactiae/genética , Regiones Promotoras Genéticas , Percepción de Quorum , Operón , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
Anaerobe ; 81: 102736, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196842

RESUMEN

OBJECTIVE: Clostridium perfringens is one of most important bacterial pathogens in the poultry industry and mainly causes necrotizing enteritis (NE). This pathogen and its toxins can cause foodborne diseases in humans through the food chain. In China, with the rise of antibiotic resistance and the banning of antibiotic growth promoters (AGPs) in poultry farming, food contamination and NE are becoming more prevalent. Bacteriophages are a viable technique to control C. perfringens as an alternative to antibiotics. We isolated Clostridium phage from the environment, providing a new method for the prevention of NE and C. perfringens contamination in meat. METHODS: In this study, we selected C. perfringens strains from various regions and animal sources in China for phage isolation. The biological characteristics of Clostridium phage were studied in terms of host range, MOI, one-step curve, temperature and pH stability. We sequenced and annotated the genome of the Clostridium phage and performed phylogenetic and pangenomic analyses. Finally, we studied its antibacterial activity against bacterial culture and its disinfection effect against C. perfringens in meat. RESULTS: A Clostridium phage, named ZWPH-P21 (P21), was isolated from chicken farm sewage in Jiangsu, China. P21 has been shown to specifically lyse C. perfringens type G. Further analysis of basic biological characteristics showed that P21 was stable under the conditions of pH 4-11 and temperature 4-60 °C, and the optimal multiple severity of infection (MOI) was 0.1. In addition, P21 could form a "halo" on agar plates, suggesting that the phage may encode depolymerase. Genome sequence analysis showed that P21 was the most closely related to Clostridium phage CPAS-15 belonging to the Myoviridae family, with a recognition rate of 97.24% and a query coverage rate of 98%. No virulence factors or drug resistance genes were found in P21. P21 showed promising antibacterial activity in vitro and in chicken disinfection experiments. In conclusion, P21 has the potential to be used for preventing and controlling C. perfringens in chicken food production.


Asunto(s)
Bacteriófagos , Infecciones por Clostridium , Enteritis , Enfermedades de las Aves de Corral , Animales , Humanos , Clostridium perfringens/genética , Bacteriófagos/genética , Pollos , Desinfección , Filogenia , Antibacterianos/farmacología , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Carne
4.
J Environ Manage ; 338: 117778, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37019021

RESUMEN

Source contributions and regional transport of maximum daily average 8-h (MDA8) O3 during a high O3 month (June 2019) in Henan province in central China are explored using a source-oriented Community Multiscale Air Quality (CMAQ) model. The monthly average MDA8 O3 exceeds ∼70 ppb in more than half of the areas and shows a clear spatial gradient, with lower O3 concentrations in the southwest and higher in the northeast. Significant contributions of anthropogenic emissions to monthly average MDA8 O3 concentrations of more than 20 ppb are predicted in the provincial capital Zhengzhou, mostly due to emissions from the transportation sector (∼50%) and in the areas in the north and northeast regions where industrial and power generation-related emissions are high. Biogenic emissions in the region only contribute to approximately 1-3 ppb of monthly average MDA8 O3. In industrial areas north of the province, their contributions reach 5-7 ppb. Two CMAQ-based O3-NOx-VOCs sensitivity assessments (the local O3 sensitivity ratios based on the direct decoupled method and the production ratio of H2O2 to HNO3) and the satellite HCHO to NO2 column density ratio consistently show that most of the areas in Henan are in NOx-limited regime. In contrast, the high O3 concentration areas in the north and at the city centers are in the VOC-limited or transition regimes. The results from this study suggest that although reducing NOx emissions to reduce O3 pollution in the region is desired in most areas, VOC reductions must be applied to urban and industrial regions. Source apportionment simulations with and without Henan anthropogenic emissions show that the benefit of local anthropogenic NOx reduction might be lower than expected from the source apportionment results because the contributions of Henan background O3 increase in response to the reduced local anthropogenic emissions due to less NO titration. Thus, collaborative O3 controls in neighboring provinces are needed to reduce O3 pollution problems in Henan effectively.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , China , Monitoreo del Ambiente/métodos , Peróxido de Hidrógeno , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
5.
Arch Microbiol ; 204(5): 244, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35386008

RESUMEN

Streptococcus suis is an important emerging zoonosis that causes economic losses in the pig industry and severe threats to public health. Transcriptional regulators play essential roles in bacterial adaptation to host environments. In this study, we identified a novel XRE family transcriptional regulator in S. suis CZ130302, XtrSs, involved in the bacterial fitness to hydrogen peroxide stress. Based on electrophoretic mobility shift and ß-galactosidase activity assays, we found that XtrSs auto-regulated its own transcription and repressed the expression of its downstream gene psePs, a surface protein with unknown function in S. suis, by binding to a palindromic sequence from the promoter region. Furthermore, we proved that the deletion of the psePs gene attenuated bacterial antioxidant response. Phylogenetic analysis revealed that XtrSs and PsePs naturally co-existed as a combination in most S. suis genomes. Collectively, we demonstrated the binding characteristics of XtrSs in S. suis and provided a new insight that XtrSs played a critical role in modulating psePs to the hydrogen peroxide resistance of S. suis.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Filogenia , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Porcinos , Virulencia/genética
6.
Vet Res ; 52(1): 50, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762005

RESUMEN

Streptococcus suis (S. suis) is an important zoonotic pathogen that causes septicaemia, meningitis and streptococcal toxic shock-like syndrome in its host, and recent studies have shown that S. suis could be competent for natural genetic transformation. Transformation is an important mechanism for the horizontal transfer of DNA, but some elements that affect the transformation process need to be further explored. Upon entering the competent state, Streptococcus species stimulate the transcription of competence-related genes that are responsible for exogenous DNA binding, uptake and processing. In this study, we performed conserved promoter motif and qRT-PCR analyses and identified CrfP as a novel murein hydrolase that is widespread in S. suis and stimulated with a peptide pheromone in the competent state through a process controlled by ComX. A bioinformatics analysis revealed that CrfP consists of a CHAP hydrolase domain and two bacterial Src homology 3-binding (SH3b) domains. Further characterization showed that CrfP could be exported to extracellular bacterial cells and lytic S. suis strains of different serotypes, and this finding was verified by TEM and a turbidity assay. To investigate the potential effect of CrfP in vivo, a gene-deletion mutant (ΔcrfP) was constructed. Instead of stopping the natural transformation process, the inactivation of CrfP clearly reduced the effective transformation rate. Overall, these findings provide evidence showing that CrfP is important for S. suis serovar 2 competence.


Asunto(s)
Proteínas Bacterianas/genética , Hidrolasas/genética , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/genética , Enfermedades de los Porcinos/microbiología , Animales , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Hidrolasas/metabolismo , Serogrupo , Infecciones Estreptocócicas/microbiología , Streptococcus suis/enzimología , Sus scrofa , Porcinos , Transformación Bacteriana
7.
J Nat Prod ; 84(4): 1175-1184, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33760626

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has become increasingly problematic around the world, not only for its hazards to livestock but also due to the possibility that it is a zoonotic disease. Although vaccine therapy has made some progress toward PEDV control, additional effective therapeutic strategies against PEDV are needed, such as the development of chemotherapeutic agents. The aim of this work was to identify novel anti-PEDV agents by designing and synthesizing a series of phenanthridine derivatives. Among them, three compounds (compounds 1, 2, and 4) were identified as potent anti-PEDV agents exhibiting suppression of host cell heat shock cognate 70 (Hsc70) expression. Mechanism studies revealed that host Hsc70 is involved in the replication of PEDV, and its expression can be suppressed by destabilization of the mRNA, resulting in inhibition of PEDV replication. Activity against PEDV in vivo in PEDV-infected piglets suggested that phenanthridine derivatives are the first host-acting potential anti-PEDV agents.


Asunto(s)
Antivirales/farmacología , Proteínas del Choque Térmico HSC70/metabolismo , Fenantridinas/farmacología , Virus de la Diarrea Epidémica Porcina/efectos de los fármacos , Animales , Antivirales/síntesis química , Línea Celular , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/veterinaria , Diseño de Fármacos , Estructura Molecular , Fenantridinas/síntesis química , Porcinos
8.
J Dairy Sci ; 104(4): 4893-4903, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33551160

RESUMEN

Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis worldwide, resulting in considerable economic losses. In this study, we isolated 42 S. agalactiae strains in 379 milk samples from cows with subclinical mastitis on 15 dairy farms in 12 Chinese provinces. Analysis based on capsular typing and multilocus sequence typing, combined with patterns of virulence gene scanning and antimicrobial resistance, identified the lineages and populations of the isolates. We grouped the 42 isolates into 7 sequence types belonging to 6 clonal complexes, mainly CC103 (31/42 isolates; 73.8%). We identified an ST-23 strain named Sa 129 for the first time on Chinese dairy farms-this strain is usually associated with human isolates. Capsular types Ia and II were predominant in capsular typing. The prevalence of virulence profile 1 (bibA, cfb, cspA, cylE, fbsA, fbsB, hylB, and pavA) was 64.3%, and represented the main trend in China. With respect to antimicrobial resistance, most isolates were susceptible to ß-lactams, rifamycin, glycopeptides, and oxazolidone; resistance to several antimicrobial agents, including lincomycin, clindamycin, and doxycycline, varied in 4 different regions. Our research provides a profile for the molecular epidemiology, multilocus sequence typing, antimicrobial resistance, and virulence gene clustering of S. agalactiae, and may be beneficial for the clinical monitoring, prevention, and control of mastitis in dairy cattle.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Mastitis , Animales , Antibacterianos/farmacología , Bovinos , China/epidemiología , Análisis por Conglomerados , Femenino , Mastitis/veterinaria , Mastitis Bovina/epidemiología , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Streptococcus agalactiae/genética , Virulencia/genética , Factores de Virulencia/genética
9.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32690636

RESUMEN

Streptococcus agalactiae (group B streptococcus [GBS]) has received continuous attention for its involvement in invasive infections and its broad host range. Transcriptional regulators have an important impact on bacterial adaptation to various environments. Research on transcriptional regulators will shed new light on GBS pathogenesis. In this study, we identified a novel XRE-family transcriptional regulator encoded on the GBS genome, designated XtgS. Our data demonstrate that XtgS inactivation significantly increases bacterial survival in host blood and animal challenge test, suggesting that it is a negative regulator of GBS pathogenicity. Further transcriptomic analysis and quantitative reverse transcription-PCR (qRT-PCR) mainly indicated that XtgS significantly repressed transcription of its upstream gene pseP Based on electrophoretic mobility shift and lacZ fusion assays, we found that an XtgS homodimer directly binds a palindromic sequence in the pseP promoter region. Meanwhile, the PseP and XtgS combination naturally coexists in diverse Streptococcus genomes and has a strong association with sequence type, serotype diversification and host adaptation of GBS. Therefore, this study reveals that XtgS functions as a transcriptional regulator that negatively affects GBS virulence and directly represses PseP expression, and it provides new insights into the relationships between transcriptional regulator and genome evolution.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/patogenicidad , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Filogenia , Regiones Promotoras Genéticas , Unión Proteica , Infecciones Estreptocócicas/metabolismo , Streptococcus/clasificación , Streptococcus/genética , Streptococcus agalactiae/genética , Factores de Transcripción/genética , Transcripción Genética , Virulencia/genética , Pez Cebra
10.
BMC Vet Res ; 15(1): 377, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31660968

RESUMEN

BACKGROUND: Streptococcus suis is a prominent pathogen causing septicemia and meningitis in swine and humans. Bacitracin is used widely as a growth promoter in animal feed and to control the spread of necrotic enteritis in most developing countries. This study aimed to characterize a novel membrane transporter module Sst comprising SstE, SstF, and SstG for bacitracin resistance. RESULTS: Comparative genomics and protein homology analysis found a potential efflux pump SstFEG encoded upstream of well-known bacitracin-resistance genes bceAB and bceRS. A four-fold decrease in bacitracin susceptibility was observed in sstFEG deletion mutant comparing with S. suis wildtype strain CZ130302. Further studies indicated that the bacitracin tolerance mediated by SstFEG is not only independent of the BceAB transporter, but also regulated by the two-component system BceSR. Given that SstFEG are harbored by almost all virulent strains, but not in the avirulent strains, we managed to explore its potential role in bacterial pathogencity. Indeed, our results showed that SstFEG is involved in S. suis colonization and virulence in animal infection model by its potential competitive survival advantage against host bactericidal effect. CONCLUSION: To our knowledge, this is the first study to functionally characterize the bacitracin efflux pump in S. suis to provide evidence regarding the important roles of the novel ABC transporter system SstFEG with respect to drug resistance and virulence.


Asunto(s)
Antibacterianos/farmacología , Bacitracina/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/metabolismo , Streptococcus suis/efectos de los fármacos , Animales , Antibacterianos/metabolismo , Antiinfecciosos Locales/metabolismo , Antiinfecciosos Locales/farmacología , Bacitracina/metabolismo , Proteínas Bacterianas/genética , Femenino , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Infecciones Estreptocócicas/microbiología , Streptococcus suis/metabolismo , Streptococcus suis/patogenicidad , Virulencia
11.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29229728

RESUMEN

Clustered regularly interspaced palindromic repeats (CRISPR) and their associated cas genes have been demonstrated to regulate self-genes and virulence in many pathogens. In this study, we found that inactivation of cas9 caused reduced adhesion and intracellular survival of the piscine Streptococcus agalactiae strain GD201008-001 and significantly decreased the virulence of this strain in zebrafish and mice. Further investigation indicated that the regR transcriptional regulator was upregulated in the Δcas9 mutant. As regR mediates the repression of hyaluronidase, a critical factor involved in opening the blood-brain barrier (BBB) in mice, cas9-mediated repression of regR transcription is important for S. agalactiae to open the BBB and thereby cause meningitis in animals. This study expands our understanding of endogenous gene regulation mediated by CRISPR-Cas systems in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endonucleasas/metabolismo , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/enzimología , Streptococcus agalactiae/patogenicidad , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Proteínas Bacterianas/genética , Barrera Hematoencefálica/microbiología , Sistemas CRISPR-Cas , Endonucleasas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Streptococcus agalactiae/genética , Factores de Transcripción/genética , Virulencia , Pez Cebra
12.
Org Biomol Chem ; 15(9): 2119, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28177024

RESUMEN

Correction for 'Intermolecular interactions boost aggregation induced emission in carbazole Schiff base derivatives' by Xiaoping Gan, et al., Org. Biomol. Chem., 2017, 15, 256-264.

13.
BMC Vet Res ; 13(1): 94, 2017 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-28388949

RESUMEN

BACKGROUND: Swine extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen that leads to economic and welfare costs in the swine industry worldwide, and is occurring with increasing frequency in China. By far, various virulence factors have been recognized in ExPEC. Here, we investigated the virulence genotypes and clonal structure of collected strains to improve the knowledge of phylogenetic traits of porcine ExPECs in China. RESULTS: We isolated 64 Chinese porcine ExPEC strains from 2013 to 14 in China. By multiplex PCR, the distribution of isolates belonging to phylogenetic groups B1, B2, A and D was 9.4%, 10.9%, 57.8% and 21.9%, respectively. Nineteen virulence-related genes were detected by PCR assay; ompA, fimH, vat, traT and iutA were highly prevalent. Virulence-related genes were remarkably more prevalent in group B2 than in groups A, B1 and D; notably, usp, cnf1, hlyD, papA and ibeA were only found in group B2 strains. Genotyping analysis was performed and four clusters of strains (named I to IV) were identified. Cluster IV contained all isolates from group B2 and Cluster IV isolates had the strongest pathogenicity in a mouse infection model. As phylogenetic group B2 and D ExPEC isolates are generally considered virulent, multilocus sequence typing (MLST) analysis was performed for these isolates to further investigate genetic relationships. Two novel sequence types, ST5170 and ST5171, were discovered. Among the nine clonal complexes identified among our group B2 and D isolates, CC12 and CC95 have been indicated to have high zoonotic pathogenicity. The distinction between group B2 and non-B2 isolates in virulence and genotype accorded with MLST analysis. CONCLUSION: This study reveals significant genetic diversity among ExPEC isolates and helps us to better understand their pathogenesis. Importantly, our data suggest group B2 (Cluster IV) strains have the highest risk of causing animal disease and illustrate the correlation between genotype and virulence.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/patogenicidad , Enfermedades de los Porcinos/microbiología , Animales , China/epidemiología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Escherichia coli Patógena Extraintestinal/clasificación , Variación Genética , Ratones , Tipificación de Secuencias Multilocus , Filogenia , Porcinos/microbiología , Enfermedades de los Porcinos/epidemiología , Virulencia , Factores de Virulencia/genética
14.
Org Biomol Chem ; 15(1): 256-264, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27901535

RESUMEN

Six D-π-A model compounds (compounds 1-6) were conveniently synthesized and characterized by 1H NMR, 13C NMR, MS and single crystal X-ray diffraction. One photon absorption and emission properties were studied by using a series of UV-visible and fluorescence spectra and theoretical calculations were applied to investigate the structure-property relationships, which showed that all six compounds possessed an obvious intramolecular charge transfer process which could be attributed to their optical properties. We simultaneously investigated their fluorescence emission performance in water/acetonitrile mixtures and found that they all have outstanding aggregation induced emission properties. Scanning electron microscopy testing illustrated that orderly aggregation was the main reason for their aggregation induced emission properties. Cytotoxicity tests indicated that all these compounds had good biocompatibility for living cells, and bio-imaging studies highlighted the potential application of the six compounds in one-photon fluorescence microscopy imaging domains.


Asunto(s)
Carbazoles/química , Colorantes Fluorescentes/química , Bases de Schiff/química , Acetonitrilos/química , Carbazoles/síntesis química , Cristalografía por Rayos X , Dimerización , Colorantes Fluorescentes/síntesis química , Células HeLa , Células Hep G2 , Humanos , Microscopía Fluorescente , Modelos Moleculares , Imagen Óptica , Fotones , Bases de Schiff/síntesis química , Espectrometría de Fluorescencia , Agua/química
15.
Dis Aquat Organ ; 122(2): 163-170, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28000606

RESUMEN

Vaccination is a widely accepted and effective method to prevent most pathogenic diseases in aquaculture. Various species of tilapia, especially Nile tilapia Oreochromis niloticus, are farmed worldwide because of their high consumer demand. Recently, the tilapia-breeding industry has been hampered by outbreaks of Streptococcus agalactiae infection, which cause high mortality and huge economic losses. Many researchers have attempted to develop effective S. agalactiae vaccines for tilapia. This review provides a summary of the different kinds of S. agalactiae vaccines for tilapia that have been developed recently. Among the various vaccine types, inactivated S. agalactiae vaccines showed superior protection efficiency when compared with live attenuated, recombinant and DNA vaccines. With respect to vaccination method, injecting the vaccine into tilapia provided the most effective immunoprotection. Freund's incomplete adjuvant appeared to be suitable for tilapia vaccines. Other factors, such as immunization duration and number, fish size and challenge dose, also influenced the vaccine efficacy.


Asunto(s)
Enfermedades de los Peces/prevención & control , Infecciones Estreptocócicas/veterinaria , Vacunas Estreptocócicas/inmunología , Streptococcus agalactiae/inmunología , Tilapia , Animales , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/prevención & control
16.
Wei Sheng Wu Xue Bao ; 56(1): 110-9, 2016 Jan 04.
Artículo en Zh | MEDLINE | ID: mdl-27305785

RESUMEN

OBJECTIVE: From the previous comparative genomic analysis, we found a specific unknown 10 kb sequence (including 11 Open reading Frames) in Chinese piscine strain GD201008-001 genome. To study the role of 10 kb in the pathogenicity of piscine S. agalactiae, the 10 kb sequence was deleted from the GD201008-001 genome. METHODS: The isogenic mutant Δ10 kb was constructed by using the temperature-sensitive Streptococcus-E. coli shuttle vector pSET4s. We compared the growth characteristics, adherence to HEp-2 cell and bacterial virulence in a zebrafish infection model between wild strain and mutant. Meanwhile the expressions of the known virulence genes from GD201008-001 and Δ10 kb were also quantified by real-time PCR. RESULTS: The Δ10 kb showed no significant differences in bacterial morphology and adherence to HEp-2 cells compared with the wild-type strain, but the speed of growth was slightly slower than the wild strain. Furthermore the 50% lethal dose of Δ10 kb was decreased up to 10-fold (P < 0.001) of the parental strain in a zebrafish infection model, and the expressions of the virulence genes, PI-2b and neul, were significantly increased in the mutant. CONCLUSION: These findings demonstrated that the 10 kb sequence of piscine Streptococcus agalactiae exerts a significant effect on bacterial virulence and probably regulates the virulence genes expression of GD20 1008-001.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/patogenicidad , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Virulencia , Pez Cebra
17.
Infect Immun ; 82(6): 2615-25, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24711564

RESUMEN

Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor alpha (TNF-α), than the wild type in macrophages as well as in mice. Furthermore, only Hyl(+) strains could grow utilizing hyaluronic acid (HA) as the sole carbon source, suggesting that Hyl permits the organism to utilize host HA as an energy source. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the hylb mutant was highly attenuated relative to the wild-type strain. Experimental infection of BALB/c mice revealed that bacterial loads in the blood, spleen, and brain at 16 h postinfection were significantly reduced in the ΔhylB mutant compared to those in wild-type-infected mice. In conclusion, hyaluronidase has a strong influence on the intracellular survival of S. agalactiae and proinflammatory cytokine expression, suggesting that it plays a key role in S. agalactiae pathogenicity.


Asunto(s)
Citocinas/metabolismo , Hialuronoglucosaminidasa/fisiología , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/fisiología , Análisis de Varianza , Animales , Encéfalo/microbiología , Células Cultivadas , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Femenino , Enfermedades de los Peces/microbiología , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Hialuronoglucosaminidasa/genética , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Bazo/microbiología , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae/genética , Streptococcus agalactiae/crecimiento & desarrollo , Streptococcus agalactiae/patogenicidad , Pez Cebra
18.
BMC Plant Biol ; 14: 243, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25224438

RESUMEN

BACKGROUND: Tea is one of the most consumed beverages worldwide. The healthy effects of tea are attributed to a wealthy of different chemical components from tea. Thousands of studies on the chemical constituents of tea had been reported. However, data from these individual reports have not been collected into a single database. The lack of a curated database of related information limits research in this field, and thus a cohesive database system should necessarily be constructed for data deposit and further application. DESCRIPTION: The Tea Metabolome database (TMDB), a manually curated and web-accessible database, was developed to provide detailed, searchable descriptions of small molecular compounds found in Camellia spp. esp. in the plant Camellia sinensis and compounds in its manufactured products (different kinds of tea infusion). TMDB is currently the most complete and comprehensive curated collection of tea compounds data in the world. It contains records for more than 1393 constituents found in tea with information gathered from 364 published books, journal articles, and electronic databases. It also contains experimental 1H NMR and 13C NMR data collected from the purified reference compounds or collected from other database resources such as HMDB. TMDB interface allows users to retrieve tea compounds entries by keyword search using compound name, formula, occurrence, and CAS register number. Each entry in the TMDB contains an average of 24 separate data fields including its original plant species, compound structure, formula, molecular weight, name, CAS registry number, compound types, compound uses including healthy benefits, reference literatures, NMR, MS data, and the corresponding ID from databases such as HMDB and Pubmed. Users can also contribute novel regulatory entries by using a web-based submission page. The TMDB database is freely accessible from the URL of http://pcsb.ahau.edu.cn:8080/TCDB/index.jsp. The TMDB is designed to address the broad needs of tea biochemists, natural products chemists, nutritionists, and members of tea related research community. CONCLUSION: The TMDB database provides a solid platform for collection, standardization, and searching of compounds information found in tea. As such this database will be a comprehensive repository for tea biochemistry and tea health research community.


Asunto(s)
Bases de Datos Factuales , Té/química , Metaboloma , Interfaz Usuario-Computador
19.
BMC Vet Res ; 10: 259, 2014 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-25344337

RESUMEN

BACKGROUND: Since 2009, large-scale Streptococcus agalactiae infections have broken out in cultured tilapia farms in China, resulting in considerable economic losses. Screening of the surface proteins is required to identify virulence factors or protective antigens involved in piscine S.agalactiae infections in tilapia. Pre-absorbed immunoproteomics method (PAIM) is a useful method previously established in our laboratory for identifying bacterial surface proteins. RESULTS: A serine-rich repeat protein family 1 (Srr-1), designated XF, was identified by PAIM in piscine S. agalactiae isolate GD201008-001. To investigate the role of XF in the pathogenesis of piscine S. agalactiae, an isogenic xf mutant strain (Δxf) and a complemented strain (CΔxf) were successfully constructed. The Δxf mutant and CΔxf showed no significant differences in growth characteristics and adherence to HEp-2 cells compared with the wild-type strain. However the 50% lethal dose of Δxf was increased (4-fold) compared with that of the parental strain in a zebrafish infection model. CONCLUSIONS: The findings demonstrated that XF is a virulence-related, highly immunoreactive surface protein and is involved in the pathogenicity of S. agalactiae infections in fish.


Asunto(s)
Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/fisiología , Factores de Virulencia/inmunología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/fisiología , Animales , Células Hep G2/microbiología , Humanos , Immunoblotting/veterinaria , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/fisiología , Pez Cebra/microbiología
20.
Vaccines (Basel) ; 12(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38400121

RESUMEN

Streptococcus suis (S. suis) is a zoonotic pathogen with multiple serotypes, and thus, multivalent vaccines generating cross-protection against S. suis infections are urgently needed to improve animal welfare and reduce antibiotic abuse. In this study, we established a systematic and comprehensive epitope prediction pipeline based on immunoinformatics. Ten candidate epitopes were ultimately selected for building the multi-epitope vaccine (MVSS) against S. suis infections. The ten epitopes of MVSS were all derived from highly conserved, immunogenic, and virulence-associated surface proteins in S. suis. In silico analyses revealed that MVSS was structurally stable and affixed with immune receptors, indicating that it would likely trigger strong immunological reactions in the host. Furthermore, mice models demonstrated that MVSS elicited high titer antibodies and diminished damages in S. suis serotype 2 and Chz infection, significantly reduced sequelae, induced cytokine transcription, and decreased organ bacterial burdens after triple vaccination. Meanwhile, anti-rMVSS serum inhibited five important S. suis serotypes in vitro, exerted beneficial protective effects against S. suis infections and significantly reduced histopathological damage in mice. Given the above, it is possible to develop MVSS as a universal subunit vaccine against multiple serotypes of S. suis infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA