Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Thorac Dis ; 15(5): 2694-2707, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37324088

RESUMEN

Background: To screen the related genes of community-acquired pneumonia (CAP) by bioinformatics technology, and to analyze the clinical value of key genes. Methods: Gene chip data sets containing CAP patients and normal controls were screened from the Gene Expression Omnibus (GEO) database. The downregulated differentially expressed genes (DEGs) were screened using a gene expression analysis tool (GEO2R). Simultaneously, gene set enrichment analysis (GSEA) was used to explore the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and core genes related to CAP. The candidate genes were then intersected with the genes reported in Online Mendelian Inheritance in Man (OMIM), and the clinical value of these candidate genes was examined based on a literature search. Finally, the clinical data of the CAP patients were retrospectively analyzed. Detect the type of pathogenic bacteria in bronchial-alveolar lavage fluid (BALF) using metagenomics next-generation sequencing (mNGS) high throughput sequencing technology, and detect the expression of key genes through liquid based cell immunohistochemistry to analyze the correlation between pathogenic bacteria and key genes. Results: Through the intersection of Venn diagrams, 175 co-expressed downregulated DEGs related to CAP were identified. A total of 4 candidate genes, including ICOS, IL7R, ITK, and ZAP70, were obtained by constructing the protein mutual aid network and conducting a module analysis of the common differentially expressed genes. The core genes in the GSEA enrichment pathways were intersected with the CAP-related genes reported in the relevant literature retrieved from the OMIM database. In the Venn diagram, two genes that coexist with OMIM include IL7R and PIK3R1. After considering our findings and the relevant literature, we determined that the key gene related to the occurrence and development of CAP was IL7R. The mNGS detected 13 kinds of bacteria, 4 kinds of fungi, and 2 kinds of viruses. Based on immunohistochemical results, it was found that there were relatively more bacteria detected in the IL7R high expression group. Conclusions: The identification of the key gene IL7R and the related signaling pathways extend understanding of the pathogenesis of CAP and provide a theoretical basis for clinical targeted therapy research.

2.
Ann Transl Med ; 8(20): 1289, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33209869

RESUMEN

BACKGROUND: ARHGAP24 might play a protective effect in the development of acute pneumonia, but the underlying mechanism remained a mystery. We aimed to investigate the effect of ARHGAP24 and explore the protective mechanism based on the acute pneumonia model of rats. METHODS: Western blotting analysis was conducted to measure the expression of ARHGAP24 in the rat model of bacillus pyocyaneus-induced acute pneumonia after 12, 24, 36, and 48 h modeling. In the acute pneumonia model of rat, lung histopathological change, lung edema, and levels of inflammatory cytokines in the broncho alveolar lavage fluid (BALF) were respectively measured to comprehensively evaluate the beneficial effect of overexpression of ARHGAP24 mediated by adenovirus. The western blotting analysis was conducted to evaluate Rac1/Akt/NF-κB pathway-related protein expression change with ARHGAP24 overexpression. RESULTS: We found that ARHGAP24 expression tended to be lower in the acute pneumonia model of the rat after bacillus pyocyaneus treated 12, 24, 36, and 48 h. High expression of ARHGAP24 and a substantial ARHGAP24 positive area was found in the western blotting analysis and immunohistochemical staining in rats transfected with ARHGAP24. In the meantime, overexpression of ARHGAP24 suppressed the development of acute pneumonia through alleviating lung histopathological deterioration, lung edema, and levels of inflammatory cytokines in the BALF of the lung. What is more critical, ARHGAP24 overexpression inhibits the activation of Rac1, Akt, and NF-κB. CONCLUSIONS: Thus, we conclude that ARHGAP24 ameliorated the inflammatory response in the acute pneumonia model of the rat through inactivating the Rac1/Akt/NF-κB pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA