Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202401395, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802980

RESUMEN

Phase transitions in molecular solids involve synergistic changes in chemical and electronic structures, leading to diversification in physical and chemical properties. Despite the pivotal role of hydrogen bonds (H-bonds) in many phase-transition materials, it is rare and challenging to chemically regulate the dynamics and to elucidate the structure-property relationship. Here, four high-spin CoII com-pounds were isolated and systematically investigated by modifying the ligand terminal groups (X = S, Se) and substituents (Y = Cl, Br). S-Cl and Se-Br undergo a reversible structural phase transition near room temperature, triggering the rotation of 15-crown-5 guests and the swing between syn- and anti-conformation of NCX- ligands, accompanied by switchable magnetism. Conversely, S-Br and Se-Cl retain stability in ordered and disordered phases, respectively. H-bonds geometric analysis and ab initio calculations reveal that the electronegativity of X and Y affects the strength of NY-ap-H···X interactions. Entropy-driven structural phase transitions occur when the H-bond strength is appropriate; otherwise, the phase stays unchanged if it is too strong or weak. This work highlights a phase transition driven by H-bond strength complementarity - pairing strong acceptor with weak donor and vice versa, which offers a straightforward and effective approach for designing phase-transition molecular solids from a chemical perspective.

2.
Angew Chem Int Ed Engl ; : e202404271, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700507

RESUMEN

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4) ⋅ 4H2O (H2quinha=quinaldichydroxamic acid, HClsal=5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4) ⋅ 3H2O (HClsaldt=4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S=0 to high-spin S=1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

3.
Angew Chem Int Ed Engl ; 61(4): e202113837, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34780082

RESUMEN

We describe herein the self-assembly synthesis of an octanuclear CoII [2]catenane {[Co4 (H2 L)6 ]2 16+ } formed by the mechanical interlocking of two {[Co4 (H2 L)6 ]8+ } rectangles of unprecedented topology. Subtle manipulation of the synthetic conditions allows the isolation of a mixed-valence [Co2 III /Co2 II ]10+ non-catenated rectangle. The CoII centers in the [2]catenane exhibit slow relaxation of their magnetic moment, i. e. single-molecule magnet properties, dominated by quantum tunneling and Raman relaxation processes. This work shows that metallo-supramolecular chemistry can precisely control the organization of single-molecule magnets in topologically complex arrangements.

4.
Angew Chem Int Ed Engl ; 61(35): e202204700, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35642623

RESUMEN

Introducing magnetic switchability into artificial molecular machines is fascinating for precise control of magnetism via external stimuli. Herein, a field-induced CoII single-molecule magnet was found to exhibit the reversible switch of Jahn-Teller distortion near room temperature, along with thermal conformational motion of the 18-crown-6 rotor, which pulls the coordinated H2 O to rotate through intermolecular hydrogen bonds and triggers a single-crystal-to-single-crystal phase transition with Twarm =282 K and Tcool =276 K. Interestingly, the molecular magnetic anisotropy probed by single-crystal angular-resolved magnetometry revealed the reorientation of easy axis by 14.6°. Moreover, ON/OFF negative magnetodielectric effects were respectively observed in the high-/low-temperature phase, which manifests the spin-lattice interaction in the high-temperature phase could be stronger, in accompanied by the hydrogen bonding between the rotating 18-crown-6 and the coordinated H2 O.

5.
Angew Chem Int Ed Engl ; 60(52): 27282-27287, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34668633

RESUMEN

Here we reported the deuteration of the metal-binding equatorial water molecules in a reported HoIII single-molecule magnet (SMM) with pentagonal-bipyramidal geometry, from [Ho(CyPh2 PO)2 (H2 O)5 ]3+ to [Ho(CyPh2 PO)2 (D2 O)5 ]3+ . The hyperfine structures originating from the nuclear spin of 165 HoIII can be clearly observed. Moreover, the resulting magnetization dynamics revealed the switch of the relative relaxation rates for the two isotope-isomorphic complexes-respectively faster/slower at low/high temperature. The noticeable isotope effect arises from not only the paramagnetic metal center but also the diamagnetic ligands, which can be explained by the ab initio calculated tunnel splitting and the involvement of the super-hyperfine interaction related to the difference in the nuclear spin number of protium (1 H, I=1 /2 ) and deuterium (2 H, I=1).

6.
Angew Chem Int Ed Engl ; 60(10): 5299-5306, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33216437

RESUMEN

Combining Ising-type magnetic anisotropy with collinear magnetic interactions in single-molecule magnets (SMMs) is a significant synthetic challenge. Herein we report a Dy[15-MCCu -5] (1-Dy) SMM, where a DyIII ion is held in a central pseudo-D5h pocket of a rigid and planar Cu5 metallacrown (MC). Linking two Dy[15-MCCu -5] units with a single hydroxide bridge yields the double-decker {Dy[15-MCCu -5]}2 (2-Dy) SMM where the anisotropy axes of the two DyIII ions are nearly collinear, resulting in magnetic relaxation times for 2-Dy that are approximately 200 000 times slower at 2 K than for 1-Dy in zero external field. Whereas 1-Dy and the YIII -diluted Dy@2-Y analogue do not show remanence in magnetic hysteresis experiments, the hysteresis data for 2-Dy remain open up to 6 K without a sudden drop at zero field. In conjunction with theoretical calculations, these results demonstrate that the axial ferromagnetic Dy-Dy coupling suppresses fast quantum tunneling of magnetization (QTM). The relaxation profiles of both complexes curiously exhibit three distinct exponential regimes, and hold the largest effective energy barriers for any reported d-f SMMs up to 625 cm-1 .

7.
Inorg Chem ; 59(1): 687-694, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31820951

RESUMEN

The combination of magnetic interaction with high magnetic anisotropy provides a promising way for modulating/fine-tuning molecular magnetic behaviors. Here, we show the building block approach for the synthesis of a family of dilanthanide single-molecule magnets (SMMs) bridged with a cyanometallate starting from a monolanthanide SMM. Contingent on the central para-/diamagnetic [M(CN)6]3- (M = Fe, Co) integrated between two highly anisotropic pentagonal-bipyramid Dy(III) subunits, the remanence of magnetization is OFF/ON below 15 K and they respectively display a record reversal barrier of 659 K among d-f SMMs and 975 K among cyano-bridged SMMs.

8.
Angew Chem Int Ed Engl ; 59(26): 10610-10618, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32285987

RESUMEN

Lanthanide permanent magnets are widely used in applications ranging from nanotechnology to industrial engineering. However, limited access to the rare earths and rising costs associated with their extraction are spurring interest in the development of lanthanide-free hard magnets. Zero- and one-dimensional magnetic materials are intriguing alternatives due to their low densities, structural and chemical versatility, and the typically mild, bottom-up nature of their synthesis. Here, we present two one-dimensional cobalt(II) systems Co(hfac)2 (R-NapNIT) (R-NapNIT=2-(2'-(R-)naphthyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, R=MeO or EtO) supported by air-stable nitronyl nitroxide radicals. These compounds are single-chain magnets and exhibit wide, square magnetic hysteresis below 14 K, with giant coercive fields up to 65 or 102 kOe measured using static or pulsed high magnetic fields, respectively. Magnetic, spectroscopic, and computational studies suggest that the record coercivities derive not from three-dimensional ordering but from the interaction of adjacent chains that compose alternating magnetic sublattices generated by crystallographic symmetry.

9.
Angew Chem Int Ed Engl ; 59(26): 10306-10310, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32080955

RESUMEN

Silicon-mediated fluoride abstraction is demonstrated as a means of generating the first fluorido-cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes, trans-[MIV F4 (CN)2 ]2- (M=Re, Os), obtained from their homoleptic [MIV F6 ]2- parents. As shown by combined high-field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy of trans-[ReF4 (CN)2 ]2- as compared to [ReF6 ]2- , reflecting the severe departure from an ideal octahedral (Oh point group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building-blocks for the design of high-performance molecule-based magnetic materials.

10.
Inorg Chem ; 58(2): 999-1002, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30618249

RESUMEN

An Fe(II) SCO complex based on an acylhydrazone ligand with an amino functional group has been prepared. The complex is able to dissociate and regather upon protonation and deprotonation, in both solid state and solution, accompanied by spin state switching, marked change of color, and distinct solubility in water. Moreover, the complex shows distinct magnetic responses toward formaldehyde and protic and nonprotic solvents, as a result of the different affinity of the amino functional site with those chemicals.

11.
Inorg Chem ; 58(16): 10694-10703, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31390195

RESUMEN

The reactions of chiral ligand (R)/(S)-1,1'-binaphthyl-2,2'-diyl phosphate (R-HL/S-HL) and ErCl3·6H2O afford two pairs of di- and tetranuclear enantiomers [Er2(R/S-L)4(EtOH)6]Cl2·6.5EtOH (R-1, S-1) and [Er4(PO4)(R/S-L)8(EtOH)3(H2O)]2Cl(OH)·15EtOH·11H2O (R-2, S-2). The nuclearity of these complexes is controllable and depends on the reaction temperature with a template effect. Their chirality was evidenced by circular dichroism (CD) spectra. R-1 exhibits two magnetic relaxation pathways under a zero field, with an apparent barrier of 40 K. Ab initio calculations revealed a ferromagnetic dipolar interaction between these two Er(III) ions, the equatorial nature of the ligand field, and the probable origin of the two relaxations.

12.
Inorg Chem ; 58(2): 1301-1308, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30592214

RESUMEN

A family of dinuclear dysprosium cores bridged by different ligands within a polyoxometalates (POMs) framework, (TBA)8.5H1.5[(PW11O39)2Dy2X2(H2O)2]·6H2O (X = OH (1), F (2), OAc (3); TBA = tetra- n-butylammonium), was successfully synthesized and structurally characterized. Magnetic studies indicate that the bridging ligands can significantly affect the magnetic behaviors, with 1 and 3 showing antiferromagnetic coupling and 2 bridged by fluoride ions showing ferromagnetic interaction. 1 and 2 behaved as single-molecule magnets (SMMs) with the thermally activated energy barrier of 98(5) and 74(6) cm-1 under zero dc filed, respectively, whereas no SMM behavior was observed for 3 bridged by two µ-η1:η2-acetato ligands. Notably, the low-temperature fluorescence spectra of 1-3 provide valuable information on the energy levels, which are consistent with the anisotropic barriers determined by magnetic measurements. These results offer an insight into the magneto-optical correlation. Furthermore, the effective energy barrier of 1 reaches a breakthrough among all POM-based SMMs.

13.
Chem Soc Rev ; 47(7): 2431-2453, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29492482

RESUMEN

Toward promising candidates of quantum information processing, the rapid development of lanthanide-based single-molecule magnets (Ln-SMMs) highlights design strategies in consideration of the local symmetry of lanthanide ions. In this review, crystal-field theory is employed to demonstrate the electronic structures according to the semiquantitative electrostatic model. Then, specific symmetry elements are analysed for the elimination of transverse crystal fields and quantum tunnelling of magnetization (QTM). In this way, high-performance Ln-SMMs can be designed to enable extremely slow relaxation of magnetization, namely magnetic blocking; however, their practical magnetic characterization becomes increasingly challenging. Therefore, we will attempt to interpret the experimental behaviours and clarify some issues in detail. Finally, representative Ln-SMMs with specific local symmetries are summarized in combination with the discussion on the symmetry strategies, and some of the underlying questions are put forward.

14.
Inorg Chem ; 57(18): 11782-11787, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30160953

RESUMEN

Slow relaxation of magnetization is observed in a neodymium(III) single-ion magnet based on phosphine oxide, which successfully extends our pentagonal bipyramidal family to light lanthanides. Comprehensive magnetic characterizations reveal that the magnetic dynamics follow the power law that corresponds to a Raman process, despite an energy splitting of 207 cm-1 evidenced by the ab initio calculation. Compared with a similar complex, the magnetic dynamics and magneto-structural correlations are clarified, providing deeper insight into the pursuit of promising light lanthanide single-molecule magnets.

15.
Inorg Chem ; 57(12): 6773-6777, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29863855

RESUMEN

Two structurally intriguing dysprosium(III)-substituted polyoxometalates, [Dy6(ampH)4(H2O)23(ampH2)(PW11O39)2] (1) and [Dy9(CO3)3(ampH)2(H2O)12(PW10O37)6]35- (2), are assembled by the same precursor under different pH conditions. The structure of 1 contains an octahedral {Dy6(ampH)4} core, and a unique windmill-type {Dy9(CO3)3(ampH)2} for 2. Single-molecule magnet behavior is observed for 2 with a thermally activated energy barrier of 56 K and no appreciable quantum tunneling of magnetization under zero field.

16.
Inorg Chem ; 57(7): 4070-4076, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29553723

RESUMEN

A chiral Co(II)-based coordination polymer, [Co3(pimda)2(H2O)5] (1, H3pimda = 2-propyl-1H-imidazole-4,5-dicarboxylic acid) with 3D hyperkagomé topology is reported. Upon heating/cooling, the water molecules which are coordinated to a pair of crystallographically symmetric Co(II) ions are removed/recovered discretely in two steps, giving [Co3(pimda)2(H2O)4] (2) and [Co3(pimda)2(H2O)3] (3), which is evidenced by the reversible single-crystal-to-single-crystal (SCSC) structural transformations. As the coordination geometry of the two Co(II) ions changes from octahedron to trigonal bipyramid, obvious color change from pink for 1 to dark violet for 2 and 3 is observed. Further magnetic measurements demonstrate the presence of a solvatomagnetic effect from paramagnets for 1 and 2 to weak ferromagnet for 3. Moreover, as revealed by the variable-temperature crystallographic measurements, the first and second dehydration temperatures could be controlled from 298 K (25 °C) and 383 K (110 °C) sealed in a capillary (high humidity) to 255 K (-18 °C) and 307 K (34 °C) in dry N2 (low humidity), indicating the strong humidity sensitivity of the structural dynamics.

17.
J Am Chem Soc ; 139(46): 16474-16477, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29068206

RESUMEN

Magneto-structural correlation studies of mononuclear intermediate S = 3/2 Fe(III) complexes, (PMe3)2FeCl3 (1) and (PMe2Ph)2FeCl3 (2), demonstrate the influence of local symmetry on magnetic anisotropy. Symmetric compound 1 is characterized by a zero-field splitting (ZFS) parameter of D = -50(2) cm-1, leading to the observation of slow magnetic relaxation with an energy barrier of 81 cm-1 along with magnetic hysteresis up to 4 K, whereas symmetrically perturbed compound 2 displays a much reduced ZFS parameter of D = -17(1) cm-1 and energy barrier of Ueff = 46 cm-1.

18.
Chemistry ; 23(24): 5708-5715, 2017 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-28135029

RESUMEN

The pentagonal bipyramidal single-ion magnets (SIMs) are among the most attractive prototypes of high-performance single-molecule magnets (SMMs). Here, a fluorescence-active phosphine oxide ligand CyPh2 PO (=cyclohexyl(diphenyl)phosphine oxide) was introduced into [Dy(CyPh2 PO)2 (H2 O)5 ]Br3 ⋅2 (CyPh2 PO)⋅EtOH⋅3 H2 O, and combined dynamic magnetic measurement, optical characterization, ab initio calculation, and magneto-optical correlation of this high-performance pseudo-D5h DyIII SIM with large Ueff (508(2) K) and high magnetic hysteresis temperature (19 K) were performed. This work provides a deeper insight into the rational design of promising molecular magnets.

19.
Biomed Microdevices ; 19(1): 13, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28229307

RESUMEN

Periosteum-derived cells was indicated to respond to mechanical force and have stem cell potential capable of differentiating into multiple tissue. Investigation of osteogenic activity under mechanical stimulation is important to understand the therapeutic conditions of fracture healing. In this work, a cell culture platform was developed for respectively providing isotropic and anisotropic axial strain. Primary rabbit periosteal cells were isolated and cultured in the chamber. Multi-axial tensile strain was received and osteogenic activity was investigated by mRNA expressions of CBFA1 and OPN. The highest mRNA expression was found in moderate strain (5-8%) under anisotropic axial strain. These results provided important foundation for further in vivo studies and development of tailor-made stretching rehabilitation equipment.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Osteogénesis , Periostio/citología , Estrés Mecánico , Resistencia a la Tracción , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Periostio/metabolismo , Presión , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos
20.
Inorg Chem ; 56(20): 12148-12157, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28937745

RESUMEN

Two new mononuclear Fe(II) complexes, [Fe(2MeLpz)(NCX)2] (L = N,N'-dimethyl-N,N'-bis((pyrazin-2-yl)methyl)-1,2-ethanediamine and X = S (1), BH3 (2)), have been synthesized and characterized by single-crystal X-ray diffraction, magnetic, optical reflectivity, and photomagnetic measurements. They have similar FeN6 coordination environments offered by the tetradentate ligand with a cis-α conformation and two NCX- coligands in cis positions. However, 1 and 2 have different molecular arrangements and crystal packings, and are isolated in orthorhombic Pbnb and monoclinic C2/c space groups, respectively. 1 remains in a high spin state (S = 2) over all temperatures while 2 undergoes a spin transition around 168 K with a small thermal hysteresis of about 0.4 K (at a temperature scan rate of 1.3 K min-1). This phase transition, which can also be optically detected due to the associated marked change of the sample color, occurs between two structurally characterized phases, which exhibit Fe(II) complexes in their high spin and low spin states at high and low temperatures, respectively. The reversible photoswitching between these two states has also been confirmed at low temperatures using well separated wavelength irradiations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA