Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Inform ; 139: 104298, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731730

RESUMEN

BACKGROUND: Many important clinical decisions require causal knowledge (CK) to take action. Although many causal knowledge bases for medicine have been constructed, a comprehensive evaluation based on real-world data and methods for handling potential knowledge noise are still lacking. OBJECTIVE: The objectives of our study are threefold: (1) propose a framework for the construction of a large-scale and high-quality causal knowledge graph (CKG); (2) design the methods for knowledge noise reduction to improve the quality of the CKG; (3) evaluate the knowledge completeness and accuracy of the CKG using real-world data. MATERIAL AND METHODS: We extracted causal triples from three knowledge sources (SemMedDB, UpToDate and Churchill's Pocketbook of Differential Diagnosis) based on rule methods and language models, performed ontological encoding, and then designed semantic modeling between electronic health record (EHR) data and the CKG to complete knowledge instantiation. We proposed two graph pruning strategies (co-occurrence ratio and causality ratio) to reduce the potential noise introduced by SemMedDB. Finally, the evaluation was carried out by taking the diagnostic decision support (DDS) of diabetic nephropathy (DN) as a real-world case. The data originated from a Chinese hospital EHR system from October 2010 to October 2020. The knowledge completeness and accuracy of the CKG were evaluated based on three state-of-the-art embedding methods (R-GCN, MHGRN and MedPath), the annotated clinical text and the expert review, respectively. RESULTS: This graph included 153,289 concepts and 1,719,968 causal triples. A total of 1427 inpatient data were used for evaluation. Better results were achieved by combining three knowledge sources than using only SemMedDB (three models: area under the receiver operating characteristic curve (AUC): p < 0.01, F1: p < 0.01), and the graph covered 93.9 % of the causal relations between diseases and diagnostic evidence recorded in clinical text. Causal relations played a vital role in all relations related to disease progression for DDS of DN (three models: AUC: p > 0.05, F1: p > 0.05), and after pruning, the knowledge accuracy of the CKG was significantly improved (three models: AUC: p < 0.01, F1: p < 0.01; expert review: average accuracy: + 5.5 %). CONCLUSIONS: The results demonstrated that our proposed CKG could completely and accurately capture the abstract CK under the concrete EHR data, and the pruning strategies could improve the knowledge accuracy of our CKG. The CKG has the potential to be applied to the DDS of diseases.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Reconocimiento de Normas Patrones Automatizadas , Semántica , Lenguaje
2.
IEEE J Biomed Health Inform ; 28(2): 707-718, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37669206

RESUMEN

General practice plays a prominent role in primary health care (PHC). However, evidence has shown that the quality of PHC is still unsatisfactory, and the accuracy of clinical diagnosis and treatment must be improved in China. Decision making tools based on artificial intelligence can help general practitioners diagnose diseases, but most existing research is not sufficiently scalable and explainable. An explainable and personalized cognitive reasoning model based on knowledge graph (CRKG) proposed in this article can provide personalized diagnosis, perform decision making in general practice, and simulate the mode of thinking of human beings utilizing patients' electronic health records (EHRs) and knowledge graph. Taking abdominal diseases as the application point, an abdominal disease knowledge graph is first constructed in a semiautomated manner. Then, the CRKG designed referring to dual process theory in cognitive science involves the update strategy of global graph representations and reasoning on a personal cognitive graph by adopting the idea of graph neural networks and attention mechanisms. For the diagnosis of diseases in general practice, the CRKG outperforms all the baselines with a precision@1 of 0.7873, recall@10 of 0.9020 and hits@10 of 0.9340. Additionally, the visualization of the reasoning process for each visit of a patient based on the knowledge graph enhances clinicians' comprehension and contributes to explainability. This study is of great importance for the exploration and application of decision making based on EHRs and knowledge graph.


Asunto(s)
Inteligencia Artificial , Medicina General , Humanos , Reconocimiento de Normas Patrones Automatizadas , Toma de Decisiones , Cognición
3.
Artif Intell Med ; 147: 102718, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184346

RESUMEN

BACKGROUND: Diagnostic errors have become the biggest threat to the safety of patients in primary health care. General practitioners, as the "gatekeepers" of primary health care, have a responsibility to accurately diagnose patients. However, many general practitioners have insufficient knowledge and clinical experience in some diseases. Clinical decision making tools need to be developed to effectively improve the diagnostic process in primary health care. The long-tailed class distributions of medical datasets are challenging for many popular decision making models based on deep learning, which have difficulty predicting few-shot diseases. Meta-learning is a new strategy for solving few-shot problems. METHODS AND MATERIALS: In this study, a few-shot disease diagnosis decision making model based on a model-agnostic meta-learning algorithm (FSDD-MAML) is proposed. The MAML algorithm is applied in a knowledge graph-based disease diagnosis model to find the optimal model parameters. Moreover, FSDD-MAML can learn learning rates for all modules of the knowledge graph-based disease diagnosis model. For n-way, k-shot learning tasks, the inner loop of FSDD-MAML performs multiple gradient update steps to learn internal features in disease classification tasks using n×k examples, and the outer loop of FSDD-MAML optimizes the meta-objective to find the associated optimal parameters and learning rates. FSDD-MAML is compared with the original knowledge graph-based disease diagnosis model and other meta-learning algorithms based on an abdominal disease dataset. RESULT: Meta-learning algorithms can greatly improve the performance of models in top-1 evaluation compared with top-3, top-5, and top-10 evaluations. The proposed decision making model FSDD-MAML outperforms all the other models, with a precision@1 of 90.02 %. We achieve state-of-the-art performance in the diagnosis of all diseases, and the prediction performance for few-shot diseases is greatly improved. For the two groups with the fewest examples of diseases, FSDD-MAML achieves relative increases in precision@1 of 29.13 % and 21.63 % compared with the original knowledge graph-based disease diagnosis model. In addition, we analyze the reasoning process of several few-shot disease predictions and provide an explanation for the results. CONCLUSION: The decision making model based on meta-learning proposed in this paper can support the rapid diagnosis of diseases in general practice and is especially capable of helping general practitioners diagnose few-shot diseases. This study is of profound significance for the exploration and application of meta-learning to few-shot disease assessment in general practice.


Asunto(s)
Medicina General , Humanos , Algoritmos , Toma de Decisiones Clínicas , Bases del Conocimiento , Toma de Decisiones
4.
IEEE J Biomed Health Inform ; 27(11): 5237-5248, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37590111

RESUMEN

Accurate and interpretable differential diagnostic technologies are crucial for supporting clinicians in decision-making and treatment-planning for patients with fever of unknown origin (FUO). Existing solutions commonly address the diagnosis of FUO by transforming it into a multi-classification task. However, after the emergence of COVID-19 pandemic, clinicians have recognized the heightened significance of early diagnosis in patients with FUO, particularly for practical needs such as early triage. This has resulted in increased demands for identifying a wider range of etiologies, shorter observation windows, and better model interpretability. In this article, we propose an interpretable hierarchical multimodal neural network framework (iHMNNF) to facilitate early diagnosis of FUO by incorporating medical domain knowledge and leveraging multimodal clinical data. The iHMNNF comprises a top-down hierarchical reasoning framework (Td-HRF) built on the class hierarchy of FUO etiologies, five local attention-based multimodal neural networks (La-MNNs) trained for each parent node of the class hierarchy, and an interpretable module based on layer-wise relevance propagation (LRP) and attention mechanism. Experimental datasets were collected from electronic health records (EHRs) at a large-scale tertiary grade-A hospital in China, comprising 34,051 hospital admissions of 30,794 FUO patients from January 2011 to October 2020. Our proposed La-MNNs achieved area under the receiver operating characteristic curve (AUROC) values ranging from 0.7809 to 0.9035 across all five decomposed tasks, surpassing competing machine learning (ML) and single-modality deep learning (DL) methods while also providing enhanced interpretability. Furthermore, we explored the feasibility of identifying FUO etiologies using only the first N-hour time series data obtained after admission.


Asunto(s)
Fiebre de Origen Desconocido , Humanos , Fiebre de Origen Desconocido/diagnóstico , Fiebre de Origen Desconocido/epidemiología , Fiebre de Origen Desconocido/etiología , Pandemias , Hospitalización , Redes Neurales de la Computación , Diagnóstico Precoz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA