Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
EMBO J ; 40(15): e108050, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34155657

RESUMEN

Selective autophagy mediates specific degradation of unwanted cytoplasmic components to maintain cellular homeostasis. The suppressor of gene silencing 3 (SGS3) and RNA-dependent RNA polymerase 6 (RDR6)-formed bodies (SGS3/RDR6 bodies) are essential for siRNA amplification in planta. However, whether autophagy receptors regulate selective turnover of SGS3/RDR6 bodies is unknown. By analyzing the transcriptomic response to virus infection in Arabidopsis, we identified a virus-induced small peptide 1 (VISP1) composed of 71 amino acids, which harbor a ubiquitin-interacting motif that mediates interaction with autophagy-related protein 8. Overexpression of VISP1 induced selective autophagy and compromised antiviral immunity by inhibiting SGS3/RDR6-dependent viral siRNA amplification, whereas visp1 mutants exhibited opposite effects. Biochemistry assays demonstrate that VISP1 interacted with SGS3 and mediated autophagic degradation of SGS3/RDR6 bodies. Further analyses revealed that overexpression of VISP1, mimicking the sgs3 mutant, impaired biogenesis of endogenous trans-acting siRNAs and up-regulated their targets. Collectively, we propose that VISP1 is a small peptide receptor functioning in the crosstalk between selective autophagy and RNA silencing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Péptidos/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Autofagosomas/fisiología , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Péptidos/metabolismo , Inmunidad de la Planta , Plantas Modificadas Genéticamente , ARN Interferente Pequeño , ARN Polimerasa Dependiente del ARN/genética , Nicotiana/genética
2.
New Phytol ; 241(6): 2606-2620, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291701

RESUMEN

The advent of full-length transcriptome sequencing technologies has accelerated the discovery of novel splicing isoforms. However, existing alternative splicing (AS) tools are either tailored for short-read RNA-Seq data or designed for human and animal studies. The disparities in AS patterns between plants and animals still pose a challenge to the reliable identification and functional exploration of novel isoforms in plants. Here, we developed integrated full-length alternative splicing analysis (iFLAS), a plant-optimized AS toolkit that introduced a semi-supervised machine learning method known as positive-unlabeled (PU) learning to accurately identify novel isoforms. iFLAS also enables the investigation of AS functions from various perspectives, such as differential AS, poly(A) tail length, and allele-specific AS (ASAS) analyses. By applying iFLAS to three full-length transcriptome sequencing datasets, we systematically identified and functionally characterized maize (Zea mays) AS patterns. We found intron retention not only introduces premature termination codons, resulting in lower expression levels of isoforms, but may also regulate the length of 3'UTR and poly(A) tail, thereby affecting the functional differentiation of isoforms. Moreover, we observed distinct ASAS patterns in two genes within heterosis offspring, highlighting their potential value in breeding. These results underscore the broad applicability of iFLAS in plant full-length transcriptome-based AS research.


Asunto(s)
Empalme Alternativo , Transcriptoma , Humanos , Empalme Alternativo/genética , Transcriptoma/genética , Zea mays/genética , Perfilación de la Expresión Génica/métodos , Fitomejoramiento , Isoformas de Proteínas/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673847

RESUMEN

Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa , Solanum melongena , Antocianinas/metabolismo , Antocianinas/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Frutas/genética , Frutas/metabolismo , Genoma de Planta , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum melongena/enzimología , Solanum melongena/genética , Solanum melongena/metabolismo
4.
Plant Cell ; 32(9): 2878-2897, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641349

RESUMEN

Casein kinase 1 (CK1) family members are conserved Ser/Thr protein kinases that regulate important developmental processes in all eukaryotic organisms. However, the functions of CK1 in plant immunity remain largely unknown. Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, infects cereal crops and is obligately transmitted by the small brown planthopper (SBPH; Laodelphax striatellus). The BYSMV phosphoprotein (P) exists as two forms with different mobilities corresponding to 42 kD (P42) and 44 kD (P44) in SDS-PAGE gels. Mass spectrometric analyses revealed a highly phosphorylated serine-rich (SR) motif at the C-terminal intrinsically disordered region of the P protein. The Ala-substitution mutant (PS5A) in the SR motif stimulated virus replication, whereas the phosphorylation-mimic mutant (PS5D) facilitated virus transcription. Furthermore, PS5A and PS5D associated preferentially with nucleocapsid protein-RNA templates and the large polymerase protein to provide optimal replication and transcription complexes, respectively. Biochemistry assays demonstrated that plant and insect CK1 protein kinases could phosphorylate the SR motif and induce conformational changes from P42 to P44. Moreover, overexpression of CK1 or a dominant-negative mutant impaired the balance between P42 and P44, thereby compromising virus infections. Our results demonstrate that BYSMV recruits the conserved CK1 kinases to achieve its cross-kingdom infection in host plants and insect vectors.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Interacciones Huésped-Patógeno/fisiología , Proteínas de Plantas/metabolismo , Rhabdoviridae/fisiología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Quinasa de la Caseína I/genética , Genoma Viral , Proteínas de Insectos/metabolismo , Espectrometría de Masas , Mutación , Fosfoproteínas/metabolismo , Fosforilación , Enfermedades de las Plantas/virología , Rhabdoviridae/patogenicidad , Serina , Nicotiana/virología , Replicación Viral/fisiología
5.
Pharmacol Res ; 182: 106339, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35792297

RESUMEN

Internal organs fibrosis (IOF) is the leading cause of morbidity and mortality in most chronic inflammatory diseases, which is responsible for 45% of deaths due to disease. However, there is a paucity of drugs used to treat IOF, making it urgent to find medicine with good efficacy, low toxic side effects and good prognosis. Essential oils (EOs) extracted from natural herbs with a wide range of pharmacological components, multiple therapeutic targets, low toxicity, and broad sources have unique advantages and great potential in the treatment of IOF. In this review, we summarized EOs and their monomeric components with anti-IOF, and found that they work mainly through inhibiting TGF-ß-related signaling pathways, modulating inflammatory cytokines, suppressing NF-κB, and anti-oxidative stress. The prognostic improvement of natural EOs on IOF was further discussed, as well as the quality and safety issues in the current development of natural EOs. This review hopes to provide scientific basis and new ideas for the development and application of natural medicine EOs in anti-IOF.


Asunto(s)
Aceites Volátiles , Fibrosis , Humanos , FN-kappa B , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico
6.
Nanomedicine ; 43: 102547, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35292367

RESUMEN

Baicalin (BA) has a good intervention effect on encephalopathy. In this study, macrophage membrane was modified on the surface of baicalin liposomes (BA-LP) by extrusion method. Macrophage membrane modified BA-LP (MM-BA-LP) was characterized by various analytical techniques, and evaluated for brain targeting. The results presented MM-BA-LP had better brain targeting compared with BA-LP. Pharmacokinetic experiments showed that MM-BA-LP improved pharmacokinetic parameters and increased the residence time of BA. Pharmacodynamic of middle cerebral artery occlusion (MCAO) rat model was studied to verify the therapeutic effect of MM-BA-LP on cerebral ischemia reperfusion injury (CIRI). The results showed that MM-BA-LP could significantly improve the neurological deficit, cerebral infarction volume and brain pathological state of MCAO rats compared with BA-LP. These results suggested that MM-BA-LP could significantly enhance the brain targeting and improve the circulation of BA in blood, and had a significantly better neuroprotective effect on MCAO rats than BA-LP.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Encéfalo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Flavonoides , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Liposomas/farmacocinética , Macrófagos , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico
7.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362258

RESUMEN

The color of fruit peel is an economically important character of eggplant, and black-purple eggplant has received much attention for being rich in anthocyanin. However, the reason why different fruit peel colors form in eggplant is not well understood. In the present study, an integrative analysis of the metabolome and transcriptome profiles was performed in five eggplant varieties with different fruit colors. A total of 260 flavonoids were identified, and most of them showed significantly higher abundance in black-purple varieties than in other varieties. The transcriptome analysis indicated the activation of early phenylpropanoid biosynthesis genes (SmPAL, SmC4H, and Sm4CL) was more responsible for anthocyanin accumulation, while SmF3'5'H was the key factor for the formation of a purple color. Furthermore, two transcription factors, SmGL2 and SmGATA26, were identified as new hub genes associated with anthocyanin accumulation. The silencing of SmGL2 and SmGATA26 reduced anthocyanin accumulation in eggplant fruit peels, suggesting the possible involvement of SmGL2 and SmGATA26 in regulating anthocyanin biosynthesis. In addition, the pathway of plant hormone signal transduction was significantly enriched, indicating that phytohormones may cooperatively interact to modulate flavonoid biosynthesis. This study provides comprehensive information of flavonoid metabolites and new insights into the regulatory network of fruit coloration, which might be useful for the molecular breeding of eggplant.


Asunto(s)
Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pigmentación/genética , Perfilación de la Expresión Génica , Transcriptoma , Metaboloma , Flavonoides/metabolismo
8.
New Phytol ; 230(6): 2355-2370, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33666235

RESUMEN

The farmland of the world's main corn-producing area is increasingly affected by salt stress. Therefore, the breeding of salt-tolerant cultivars is necessary for the long-term sustainability of global corn production. Previous studies have shown that natural maize varieties display a large diversity of salt tolerance, yet the genetic variants underlying such diversity remain poorly discovered and applied, especially those mediating the tolerance to salt-induced osmotic stress (SIOS). Here we report a metabolomics-driven understanding and genetic improvement of maize SIOS tolerance. Using a LC-MS-based untargeted metabolomics approach, we profiled the metabolomes of 266 maize inbred lines under control and salt conditions, and then identified 37 metabolite biomarkers of SIOS tolerance (METO1-37). Follow-up metabolic GWAS (mGWAS) and genotype-to-phenotype modeling identified 10 candidate genes significantly associating with the SIOS tolerance and METO abundances. Furthermore, we validated that a citrate synthase, a glucosyltransferase and a cytochrome P450 underlie the genotype-METO-SIOS tolerance associations, and showed that their favorable alleles additively improve the SIOS tolerance of elite maize inbred lines. Our study provides a novel insight into the natural variation of maize SIOS tolerance, which boosts the genetic improvement of maize salt tolerance, and demonstrates a metabolomics-based approach for mining crop genes associated with this complex agronomic trait.


Asunto(s)
Fitomejoramiento , Zea mays , Metabolómica , Presión Osmótica , Fenotipo , Zea mays/genética
9.
Pharmacol Res ; 164: 105376, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33316383

RESUMEN

Depression is a common global mental disorder that seriously harms human physical and mental health. With the development of society, the increase of pressure and the role of various other factors make the incidence of depression increase year by year. However, there is a lack of drugs that have a fast onset, significant effects, and few side effects. Some volatile oils from traditional natural herbal medicines are usually used to relieve depression and calm emotions, such as Lavender essential oil and Acorus tatarinowii essential oil. It was reported that these volatile oils, are easy to enter the brain through the blood-brain barrier and have good antidepressant effects with little toxicity and side effects. In this review, we summarized the classification of depression, and listed the history of using volatile oils to fight depression in some countries. Importantly, we summarized the anti-depressant natural volatile oils and their monomers from herbal medicine, discussed the anti-depressive mechanisms of the volatile oils from natural medicine. The volatile oils of natural medicine and antidepressant drugs were compared and analyzed, and the application of volatile oils was explained from the clinical use and administration routes. This review would be helpful for the development of potential anti-depressant medicine and provide new alternative treatments for depressive disorders.


Asunto(s)
Antidepresivos/administración & dosificación , Depresión/tratamiento farmacológico , Trastorno Depresivo/tratamiento farmacológico , Aceites Volátiles/administración & dosificación , Aceites de Plantas/administración & dosificación , Animales , Antidepresivos/química , Antidepresivos/clasificación , Depresión/clasificación , Trastorno Depresivo/clasificación , Humanos , Aceites Volátiles/química , Aceites Volátiles/clasificación , Fitoterapia , Aceites de Plantas/química , Aceites de Plantas/clasificación , Plantas Medicinales
10.
Pharmacol Res ; 169: 105627, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33892091

RESUMEN

With the coming acceleration of global population aging, the incidence rate of cardio-cerebrovascular diseases (CVDs) is increasing. It has become the leading cause of human mortality. As a natural drug, borneol (BO) not only has anti-inflammatory, anti-oxidant, anti-apoptotic, anti-coagulant activities and improves energy metabolism but can also promote drugs to enter the target organs or tissues through various physiological barriers, such as the blood-brain barrier (BBB), mucous membrane, skin. Thus, it has a significant therapeutic effect on various CVDs, which has been confirmed in a large number of studies. However, the pharmacological actions and mechanisms of BO on CVDs have not been fully investigated. Hence, this review summarizes the pharmacological actions and possible mechanisms of BO, which provides novel ideas for the treatment of CVDs.


Asunto(s)
Canfanos/uso terapéutico , Cardiotónicos/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Canfanos/farmacología , Cardiotónicos/farmacología , Corazón/efectos de los fármacos , Humanos
11.
AAPS PharmSciTech ; 22(7): 222, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34409515

RESUMEN

Geniposide (GE) possesses excellent neuroprotective effects but with poor brain targeting and short half-life. Liposome was considered to have great potential for brain diseases. Therefore, this research aimed to develop a geniposide liposome (GE-LP) as a brain delivery system for cerebral ischemia reperfusion injury (CIRI) therapy and evaluate its characterization, pharmacokinetics, brain targeting, and neuroprotective effects in vivo. Then, a reverse-phase evaporation method was applied to develop the GE-LP and optimize the formulation. Notably, the GE-LP had suitable size, which was 223.8 nm. Subsequently, the pharmacokinetic behavior of GE solution and GE-LP in mice plasma was investigated, and the brain targeting was also researched. The results showed that GE in plasma of GE-LP displayed three folds longer distribution half-life and a higher bioavailability and brain targeting compared to GE solution. In vivo neuroprotective effects was evaluated through the middle cerebral artery occlusion (MCAO) rat model, and GE-LP exhibited a stronger tendency in preventing the injury of CIRI, which can significantly improve neurological deficits. Overall, this study demonstrates GE-LP as a new formulation with ease of preparation, sustained release, and high brain targeting, which has significant development prospects on CIRI; this is expected to improve the efficacy of GE and reduce the frequency of administration.


Asunto(s)
Iridoides , Liposomas , Daño por Reperfusión , Animales , Encéfalo , Ratones , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico
12.
J Exp Bot ; 71(20): 6684-6696, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32865553

RESUMEN

Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putative copper chaperone induced by pathogens (CCP) in Arabidopsis thaliana. CCP harbors a classical MXCXXC copper-binding site (CBS) at its N-terminus and a nuclear localization signal (NLS) at its C-terminus. CCP mainly formed nuclear speckles in the plant nucleus, which requires the NLS and CBS domains. Overexpression of CCP induced PR1 expression and enhanced resistance against Pseudomonas syringae pv. tomato DC3000 compared with Col-0 plants. Conversely, two CRISPR/Cas9-mediated ccp mutants were impaired in plant immunity. Further biochemical analyses revealed that CCP interacted with the transcription factor TGA2 in vivo and in vitro. Moreover, CCP recruits TGA2 to the PR1 promoter sequences in vivo, which induces defense gene expression and plant immunity. Collectively, our results have identified a putative nuclear copper chaperone required for plant immunity and provided evidence for a potential function of copper in the salicylic pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae/metabolismo , Ácido Salicílico
13.
Pharmacol Res ; 159: 104795, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32278035

RESUMEN

Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Mucosa Nasal/metabolismo , Preparaciones de Plantas/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Administración Intranasal , Animales , Disponibilidad Biológica , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Composición de Medicamentos , Humanos , Preparaciones de Plantas/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Distribución Tisular
14.
Mediators Inflamm ; 2020: 8414062, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33223957

RESUMEN

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are challenging diseases with the high mortality in a clinical setting. Baicalin (BA) is the main effective constituent isolated from the Chinese medical herb Scutellaria baicalensis Georgi, and studies have proved that it has a protective effect on ALI induced by lipopolysaccharide (LPS) due to the anti-inflammatory efficacy. However, BA has low solubility which may limit its clinical application. Hence, we prepared a novel drug delivery system-Baicalin liposome (BA-LP) in previous research-which can improve some physical properties of BA. Therefore, we aimed to explore the effect of BA-LP on ALI mice induced by LPS. In pharmacokinetics study, the values of t 1/2 and AUC0- t in the BA-LP group were significantly higher than that of the BA group in normal mice, indicating that BA-LP could prolong the duration time in vivo of BA. The BA-LP group also showed a higher concentration in lung tissues than the BA group. Pharmacodynamics studies showed that BA-LP had a better effect than the BA group at the same dosage on reducing the W/D ratio, alleviating the lung injury score, and decreasing the proinflammatory factors (TNF-α, IL-1ß) and total proteins in bronchoalveolar lavage fluids (BALF). In addition, the therapeutic effects of BA-LP showed a dose-dependent manner. Western blot analysis indicated that the anti-inflammatory action of BA could be attributed to the inhibition of the TLR4-NFκBp65 and JNK-ERK signaling pathways. These results suggest that BA-LP could be a valuable therapeutic candidate in the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Flavonoides/química , Regulación de la Expresión Génica , Lipopolisacáridos/química , Liposomas/química , Extractos Vegetales/farmacología , Animales , Área Bajo la Curva , Sistemas de Liberación de Medicamentos , Medicamentos Herbarios Chinos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inflamación , MAP Quinasa Quinasa 4/metabolismo , Masculino , Medicina Tradicional China , Ratones , Subunidad p50 de NF-kappa B/metabolismo , Análisis de Regresión , Reproducibilidad de los Resultados , Scutellaria baicalensis , Transducción de Señal/efectos de los fármacos , Distribución Tisular , Receptor Toll-Like 4/metabolismo
15.
PLoS Pathog ; 13(4): e1006319, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28388677

RESUMEN

RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV) γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+) RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR) activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes.


Asunto(s)
Cloroplastos/virología , Virus del Mosaico/aislamiento & purificación , Virus ARN/metabolismo , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Cloroplastos/metabolismo , Expresión Génica/fisiología , Interferencia de ARN/fisiología , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo
16.
BMC Ophthalmol ; 17(1): 44, 2017 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-28390411

RESUMEN

BACKGROUND: This study aimed to evaluate the prediction accuracy of postoperative refractions using partial coherence interferometry (IOL-Master) and applanation ultrasound (AL-3000) assisted with corneal topography (TMS-4) in eyes that had undergone myopic laser-assisted in situ keratomileusis (LASIK). METHODS: Haigis-L formula, Koch-Maloney method using Haigis formula, Shammas clinically derived K-value (simulated keratometric value) correction (Shammas c.d.) using Haigis formula, and Shammas post-LASIK (Shammas-PL) formula were used in eyes with myopic LASIK. Constants were derived from the optimized constants in 133 virgin eyes. Refractive outcomes were determined by streak retinoscopy and subjective manifest refraction. Methods and formulas were evaluated by mean error (ME), standard deviation (SD), range of error, mean absolute error (MAE), median absolute error, 95% confidence interval of MAE, and percentage of eyes within ±0.5 diopter (D), ±1.0 D, and ±1.5 D of prediction. RESULTS: SDs of the Haigis-L, Koch-Maloney method using the Haigis formula, Shammas c.d. using the Haigis formula, and the Shammas-PL formula using IOL-Master were 0.721, 0.695, 0.695, and 0.698; and those using AL-3000 assisted with TMS-4 were 0.782, 0.741, 0.743, and 0.778, respectively. CONCLUSIONS: No-history methods that corrected corneal power with measurements using IOL-Master were promising in myopic post-LASIK eyes, but still a gap in prediction accuracy exists between virgin eyes and post-LASIK eyes.


Asunto(s)
Córnea/patología , Interferometría/métodos , Queratomileusis por Láser In Situ/métodos , Lentes Intraoculares , Miopía/cirugía , Refracción Ocular/fisiología , Córnea/cirugía , Topografía de la Córnea , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Miopía/fisiopatología , Facoemulsificación , Reproducibilidad de los Resultados , Estudios Retrospectivos , Agudeza Visual
17.
Food Chem X ; 21: 101198, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38370303

RESUMEN

This study focused on analyzing the aroma formation mechanism of retronasal muscat flavor in table grapes. The sensory characteristics and fragrance components of table grape juice with different intensities of Muscat were investigated using GC-Quadrupole-MS, quantitative descriptive analysis and three-alternate forced choice. Free monoterpenoids were the main contributors to the retronasal Muscat flavor. The contribution of Muscat compounds to this flavor was quantified by Stevens coefficient, the most and the least sensitive compounds to concentration changes were citronellol and linalool, respectively. To predict the Muscat flavor intensity by mathematical modeling, established a model between Muscat flavor intensity and monoterpenoids concentration, and an optimal partial least squares regression model with a linear relationship between natural logarithms was obtained. These findings provide reference for understanding the formation mechanism of specific aromas in fruits and provide a basis for the development and quality control of processed products such as Muscat flavor grape juice.

18.
Front Microbiol ; 14: 1154768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529324

RESUMEN

Real-time monitoring of microbial dynamics during fermentation is essential for wine quality control. This study developed a method that combines the fluorescent dye propidium monoazide (PMA) with CELL-qPCR, which can distinguish between dead and live microbes for Lactiplantibacillus plantarum. This method could detect the quantity of microbes efficiently and rapidly without DNA extraction during wine fermentation. The results showed that (1) the PMA-CELL-qPCR enumeration method developed for L. plantarum was optimized for PMA treatment concentration, PMA detection sensitivity and multiple conditions of sample pretreatment in wine environment, and the optimized method can accurately quantify 104-108 CFU/mL of the target strain (L. plantarum) in multiple matrices; (2) when the concentration of dead bacteria in the system is 104 times higher than the concentration of live bacteria, there is an error of 0.5-1 lg CFU/mL in the detection results. The optimized sample pretreatment method in wine can effectively reduce the inhibitory components in the qPCR reaction system; (3) the optimized PMA-CELL-qPCR method was used to monitor the dynamic changes of L. plantarum during the fermentation of Cabernet Sauvignon wine, and the results were consistent with the plate counting method. In conclusion, the live bacteria quantification method developed in this study for PMA-CELL-qPCR in L. plantarum wines is accurate in quantification and simple in operation, and can be used as a means to accurately monitor microbial dynamics in wine and other fruit wines.

19.
Foods ; 12(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38137187

RESUMEN

Eggplant is one of the most important vegetable crops worldwide and has been considered to have great antioxidant activity. However, little information is available about the primary metabolic composition of the nutritional values of eggplant. Using a widely targeted metabolome approach, the current study investigated primary metabolic variation in 13 eggplant varieties with different morphologies. A total of 503 primary metabolites (amino acids, lipids, nucleotides, organic acids, vitamin, saccharides, and alcohols) and 170 phenolic acids were detected, among which 211 metabolites were differently accumulated. Metabolic pathway analysis of the differential metabolites revealed the significant enrichment of phenylpropanoid biosynthesis, arginine biosynthesis, alpha-linolenic acid metabolism, and linoleic acid metabolism. The higher levels of amino acids and lipids were related to the umami, soft, and waxy taste of eggplant fruit. The present work substantially contributes to the knowledge of primary metabolite compositions regarding fruit-eating quality and provides useful information for the future breeding of eggplant.

20.
J Drug Target ; 31(3): 229-242, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35587560

RESUMEN

In recent years, there have been many exciting developments in the biomedical applications of the macrophage membrane bionic drug delivery system (MM-Bio-DDS). Macrophages, as an important immune cell, are involved in initiating and regulating the specific immune response of the body. Therefore, the inflammatory process related to macrophages is an important goal in the diagnosis and treatment of many diseases. In this review, we first summarise the different methods of preparation, characterisation, release profiles and natural advantages of using macrophages as a drug delivery system (DDS). Second, we introduce the processes of various chronic inflammatory diseases and the role of macrophages in them, specifically clarifying how the MM-Bio-DDS provides a wide and effective treatment for the targeted inflammatory site. Finally, based on the existing research, we propose the application prospect and existing challenges of the MM-Bio-DDS, especially the problems in clinical transformation, to provide new ideas for the development and utilisation of the MM-Bio-DDS in targeted drug delivery for inflammation and the treatment of diseases.


Asunto(s)
Biomimética , Nanopartículas , Humanos , Sistemas de Liberación de Medicamentos , Macrófagos , Inflamación/tratamiento farmacológico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA