Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 49(1): 504-518, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33300032

RESUMEN

Mitomycin repair factor A represents a family of DNA helicases that harbor a domain of unknown function (DUF1998) and support repair of mitomycin C-induced DNA damage by presently unknown molecular mechanisms. We determined crystal structures of Bacillus subtilis Mitomycin repair factor A alone and in complex with an ATP analog and/or DNA and conducted structure-informed functional analyses. Our results reveal a unique set of auxiliary domains appended to a dual-RecA domain core. Upon DNA binding, a Zn2+-binding domain, encompassing the domain of unknown function, acts like a drum that rolls out a canopy of helicase-associated domains, entrapping the substrate and tautening an inter-domain linker across the loading strand. Quantification of DNA binding, stimulated ATPase and helicase activities in the wild type and mutant enzyme variants in conjunction with the mode of coordination of the ATP analog suggest that Mitomycin repair factor A employs similar ATPase-driven conformational changes to translocate on DNA, with the linker ratcheting through the nucleotides like a 'skipping rope'. The electrostatic surface topology outlines a likely path for the displaced DNA strand. Our results reveal unique molecular mechanisms in a widespread family of DNA repair helicases linked to bacterial antibiotics resistance.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , Modelos Químicos , Nucleósido-Trifosfatasa/metabolismo , Adenosina Trifosfato/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN/metabolismo , Daño del ADN , ADN Helicasas/química , ADN Helicasas/clasificación , Farmacorresistencia Microbiana , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Familia de Multigenes , Nucleósido-Trifosfatasa/clasificación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Electricidad Estática , Relación Estructura-Actividad , Zinc/metabolismo
2.
RNA ; 17(9): 1655-63, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21784869

RESUMEN

Human proteins 15.5K and hPrp31 are components of the major spliceosomal U4 snRNP and of the minor spliceosomal U4atac snRNP. The two proteins bind to related 5'-stem loops (5'SLs) of the U4 and U4atac snRNAs in a strictly sequential fashion. The primary binding 15.5K protein binds at K-turns that exhibit identical sequences in the two snRNAs. However, RNA sequences contacted by the secondary binding hPrp31 differ in U4 and U4atac snRNAs, and the mechanism by which hPrp31 achieves its dual specificity is presently unknown. We show by crystal structure analysis that the capping pentaloops of the U4 and U4atac 5'SLs adopt different structures in the ternary hPrp31-15.5K-snRNA complexes. In U4atac snRNA, a noncanonical base pair forms across the pentaloop, based on which the RNA establishes more intimate interactions with hPrp31 compared with U4 snRNA. Stacking of hPrp31-His270 on the noncanonical base pair at the base of the U4atac pentaloop recapitulates intramolecular stabilizing principles known from the UUCG and GNRA families of RNA tetraloops. Rational mutagenesis corroborated the importance of the noncanonical base pair and the U4atac-specific hPrp31-RNA interactions for complex stability. The more extensive hPrp31-U4atac snRNA interactions are in line with a higher stability of the U4atac compared with the U4-based ternary complex seen in gel-shift assays, which may explain how U4atac snRNA can compete with the more abundant U4 snRNA for the same protein partners in vivo.


Asunto(s)
ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Empalmosomas/genética , Secuencia de Aminoácidos , Emparejamiento Base , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Análisis de Secuencia de ARN , Empalmosomas/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-22869138

RESUMEN

The use of longer X-ray wavelengths in macromolecular crystallography has grown significantly over the past few years. The main reason for this increased use of longer wavelengths has been to utilize the anomalous signal from sulfur, providing a means for the experimental phasing of native proteins. Here, another possible application of longer X-ray wavelengths is presented: MAD at the L(III) edges of various lanthanide compounds. A first experiment at the L(III) edge of Pr was conducted on HZB MX beamline BL14.2 and resulted in the successful structure determination of the C-terminal domain of a spliceosomal protein. This experiment demonstrates that L(III) edges of lanthanides constitute potentially attractive targets for long-wavelength MAD experiments.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/análisis , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
4.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32369542

RESUMEN

At presynaptic active zones, arrays of large conserved scaffold proteins mediate fast and temporally precise release of synaptic vesicles (SVs). SV release sites could be identified by clusters of Munc13, which allow SVs to dock in defined nanoscale relation to Ca2+ channels. We here show in Drosophila that RIM-binding protein (RIM-BP) connects release sites physically and functionally to the ELKS family Bruchpilot (BRP)-based scaffold engaged in SV recruitment. The RIM-BP N-terminal domain, while dispensable for SV release site organization, was crucial for proper nanoscale patterning of the BRP scaffold and needed for SV recruitment of SVs under strong stimulation. Structural analysis further showed that the RIM-BP fibronectin domains form a "hinge" in the protein center, while the C-terminal SH3 domain tandem binds RIM, Munc13, and Ca2+ channels release machinery collectively. RIM-BPs' conserved domain architecture seemingly provides a relay to guide SVs from membrane far scaffolds into membrane close release sites.


Asunto(s)
Proteínas Portadoras/química , Sistema Nervioso Central/metabolismo , Proteínas del Citoesqueleto/química , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab3/química , Animales , Animales Modificados Genéticamente , Sitios de Unión , Canales de Calcio/genética , Canales de Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Sistema Nervioso Central/ultraestructura , Clonación Molecular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Larva/genética , Larva/metabolismo , Larva/ultraestructura , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica , Vesículas Sinápticas/ultraestructura , Proteínas de Unión al GTP rab3/genética , Proteínas de Unión al GTP rab3/metabolismo
5.
J Mol Biol ; 369(4): 902-8, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17467737

RESUMEN

The bifunctional protein U5-52K is associated with the spliceosomal 20 S U5 snRNP, and it also plays a role in immune response as CD2 receptor binding protein 2 (CD2BP2). U5-52K binds to the CD2 receptor via its GYF-domain specifically recognizing a proline-rich motif on the cytoplasmic surface of the receptor. The GYF-domain is also mediating the interaction of the proteins U5-52K and U5-15K within the spliceosomal U5 snRNP. Here we report the crystal structure of the complex of GYF-domain and U5-15K protein revealing the structural basis for the bifunctionality of the U5-52K protein. The complex structure unveils novel interaction sites on both proteins, as neither the polyproline-binding site of the GYF-domain nor the common ligand-binding cleft of thioredoxin-like proteins, to which U5-15K belongs, are involved in the interaction of U5-15K and U5-52K.


Asunto(s)
Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Empalmosomas/química , Empalmosomas/metabolismo , Propiedades de Superficie
6.
Mol Cell Biol ; 24(17): 7392-401, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15314151

RESUMEN

After each spliceosome cycle, the U4 and U6 snRNAs are released separately and are recycled to the functional U4/U6 snRNP, requiring in the mammalian system the U6-specific RNA binding protein p110 (SART3). Its domain structure is made up of an extensive N-terminal domain with at least seven tetratricopeptide repeat (TPR) motifs, followed by two RNA recognition motifs (RRMs) and a highly conserved C-terminal sequence of 10 amino acids. Here we demonstrate under in vitro recycling conditions that U6-p110 is an essential splicing factor. Recycling activity requires both the RRMs and the TPR domain but not the highly conserved C-terminal sequence. For U6-specific RNA binding, the two RRMs with some flanking regions are sufficient. Yeast two-hybrid assays reveal that p110 interacts through its TPR domain with the U4/U6-specific 90K protein, indicating a specific role of the TPR domain in spliceosome recycling. On the 90K protein, a short internal region (amino acids 416 to 550) suffices for the interaction with p110. Together, these data suggest a model whereby p110 brings together U4 and U6 snRNAs through both RNA-protein and protein-protein interactions.


Asunto(s)
Antígenos de Neoplasias/genética , Empalme del ARN , Proteínas de Unión al ARN/genética , Secuencias Repetitivas de Ácidos Nucleicos , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Análisis Mutacional de ADN , Células HeLa , Humanos , Modelos Genéticos , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Empalmosomas/metabolismo , Técnicas del Sistema de Dos Híbridos
7.
Elife ; 4: e07320, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26161500

RESUMEN

Prp3 is an essential U4/U6 di-snRNP-associated protein whose functions and molecular mechanisms in pre-mRNA splicing are presently poorly understood. We show by structural and biochemical analyses that Prp3 contains a bipartite U4/U6 di-snRNA-binding region comprising an expanded ferredoxin-like fold, which recognizes a 3'-overhang of U6 snRNA, and a preceding peptide, which binds U4/U6 stem II. Phylogenetic analyses revealed that the single-stranded RNA-binding domain is exclusively found in Prp3 orthologs, thus qualifying as a spliceosome-specific RNA interaction module. The composite double-stranded/single-stranded RNA-binding region assembles cooperatively with Snu13 and Prp31 on U4/U6 di-snRNAs and inhibits Brr2-mediated U4/U6 di-snRNA unwinding in vitro. RNP-disrupting mutations in Prp3 lead to U4/U6•U5 tri-snRNP assembly and splicing defects in vivo. Our results reveal how Prp3 acts as an important bridge between U4/U6 and U5 in the tri-snRNP and comparison with a Prp24-U6 snRNA recycling complex suggests how Prp3 may be involved in U4/U6 reassembly after splicing.


Asunto(s)
Proteínas Nucleares/metabolismo , Empalme del ARN , ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Modelos Biológicos , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteínas Nucleares Pequeñas/química
8.
Mol Cell ; 25(4): 615-24, 2007 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-17317632

RESUMEN

Protein Prp8 interacts with several other spliceosomal proteins, snRNAs, and the pre-mRNA and thereby organizes the active site(s) of the spliceosome. The DEAD-box protein Brr2 and the GTPase Snu114 bind to the Prp8 C terminus, a region where mutations in human Prp8 are linked to the RP13 form of Retinitis pigmentosa. We show crystallographically that the C-terminal domain of yeast Prp8p exhibits a Jab1/MPN-like core known from deubiquitinating enzymes. Insertions and terminal appendices are grafted onto this core, covering a putative isopeptidase center whose metal binding site is additionally impaired. Targeted yeast-two-hybrid analyses show that the RP13-linked region in the C-terminal appendix of human Prp8 is essential for binding of human Brr2 and Snu114, and that RP13 point mutations in this fragment weaken these interactions. We conclude that the expanded Prp8 Jab1/MPN domain represents a pseudoenzyme converted into a protein-protein interaction platform and that dysfunction of this platform underlies Retinitis pigmentosa.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Retinitis Pigmentosa/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN Helicasas , Proteínas Represoras/metabolismo , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/genética , Ribonucleoproteína Nuclear Pequeña U4-U6 , Ribonucleoproteína Nuclear Pequeña U5 , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Ubiquitina/metabolismo
9.
Science ; 316(5821): 115-20, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17412961

RESUMEN

Although highly homologous, the spliceosomal hPrp31 and the nucleolar Nop56 and Nop58 (Nop56/58) proteins recognize different ribonucleoprotein (RNP) particles. hPrp31 interacts with complexes containing the 15.5K protein and U4 or U4atac small nuclear RNA (snRNA), whereas Nop56/58 associate with 15.5K-box C/D small nucleolar RNA complexes. We present structural and biochemical analyses of hPrp31-15.5K-U4 snRNA complexes that show how the conserved Nop domain in hPrp31 maintains high RNP binding selectivity despite relaxed RNA sequence requirements. The Nop domain is a genuine RNP binding module, exhibiting RNA and protein binding surfaces. Yeast two-hybrid analyses suggest a link between retinitis pigmentosa and an aberrant hPrp31-hPrp6 interaction that blocks U4/U6-U5 tri-snRNP formation.


Asunto(s)
Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Factores de Empalme de ARN , Proteínas de Unión al ARN , Retinitis Pigmentosa/genética , Factores de Transcripción
10.
RNA ; 12(7): 1418-30, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16723661

RESUMEN

The human 25S U4/U6.U5 tri-snRNP is a major building block of the U2-type spliceosome and contains, in addition to the U4, U6, and U5 snRNAs, at least 30 distinct proteins. To learn more about the molecular architecture of the tri-snRNP, we have investigated interactions between tri-snRNP proteins using the yeast two-hybrid assay and in vitro binding assays, and, in addition, have identified distinct protein domains that are critical for the connectivity of this protein network in the human tri-snRNP. These studies revealed multiple interactions between distinct domains of the U5 proteins hPrp8, hBrr2 (a DExH/D-box helicase), and hSnu114 (a putative GTPase), which are key players in the catalytic activation of the spliceosome, during which the U4/U6 base-pairing interaction is disrupted and U4 is released from the spliceosome. Both the U5-specific, TPR/HAT-repeat-containing hPrp6 protein and the tri-snRNP-specific hSnu66 protein interact with several U5- and U4/U6-associated proteins, including hBrr2 and hPrp3, which contacts the U6 snRNA. Thus, both proteins are located at the interface between U5 and U4/U6 in the tri-snRNP complex, and likely play an important role in transmitting the activity of hBrr2 and hSnu114 in the U5 snRNP to the U4/U6 duplex during spliceosome activation. A more detailed analysis of these protein interactions revealed that different HAT repeats mediate interactions with specific hPrp6 partners. Taken together, data presented here provide a detailed picture of the network of protein interactions within the human tri-snRNP.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Evolución Molecular , Genes Reporteros , Glutatión Transferasa , Humanos , Reacción en Cadena de la Polimerasa , Conformación Proteica , Empalme del ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Saccharomyces cerevisiae/genética
11.
RNA ; 11(5): 598-608, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15840814

RESUMEN

The U5 snRNP plays an essential role in both U2- and U12-dependent splicing. Here, we have characterized a 52-kDa protein associated with the human U5 snRNP, designated U5-52K. Protein sequencing revealed that U5-52K is identical to the CD2BP2, which interacts with the cytoplasmic portion of the human T-cell surface protein CD2. Consistent with it associating with an snRNP, immunofluorescence studies demonstrated that the 52K protein is predominantly located in the nucleoplasm of HeLa cells, where it overlaps, at least in part, with splicing-factor compartments (or "speckles"). We further demonstrate that the 52K protein is a constituent of the 20S U5 snRNP, but is not found in U4/U6.U5 tri-snRNPs. Thus, it is the only 20S U5-specific protein that is not integrated into the tri-snRNP and resembles, in this respect, the U4/U6 di-snRNP assembly factor Prp24p/p110. Yeast two-hybrid screening and pulldown assays revealed that the 52K protein interacts with the U5-specific 102K and 15K proteins, suggesting that these interactions are responsible for its integration into the U5 particle. The N-terminal two-thirds of 52K interact with the 102K protein, whereas its C-terminal GYF-domain binds the 15K protein. As the latter lacks a proline-rich tract, our data indicate that a GYF-domain can also engage in specific protein-protein interactions in a polyproline-independent manner. Interestingly, the U5-102K protein has been shown previously to play an essential role in tri-snRNP formation, binding the U4/U6-61K protein. The interaction of 52K with a tri-snRNP bridging protein, coupled with its absence from the tri-snRNP, suggests it might function in tri-snRNP assembly.


Asunto(s)
Proteínas Portadoras/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Portadoras/química , Núcleo Celular/metabolismo , Secuencia Conservada , Células HeLa , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Peso Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Transporte de Proteínas , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U5/química , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos
12.
EMBO J ; 21(5): 1148-57, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11867543

RESUMEN

In each round of nuclear pre-mRNA splicing, the U4/U6*U5 tri-snRNP must be assembled from U4/U6 and U5 snRNPs, a reaction that is at present poorly understood. We have characterized a 61 kDa protein (61K) found in human U4/U6*U5 tri-snRNPs, which is homologous to yeast Prp31p, and show that it is required for this step. Immunodepletion of protein 61K from HeLa nuclear extracts inhibits tri-snRNP formation and subsequent spliceosome assembly and pre-mRNA splicing. Significantly, complementation with recombinant 61K protein restores each of these steps. Protein 61K is operationally defined as U4/U6 snRNP-specific as it remains bound to this particle at salt concentrations where the tri-snRNP dissociates. However, as shown by two-hybrid analysis and biochemical assays, protein 61K also interacts specifically with the U5 snRNP-associated 102K protein, indicating that it physically tethers U4/U6 to the U5 snRNP to yield the tri-snRNP. Interestingly, protein 61K is encoded by a gene (PRPF31) that has been shown to be linked to autosomal dominant retinitis pigmentosa. Thus, our studies suggest that disruptions in tri-snRNP formation and function resulting from mutations in the 61K protein may contribute to the manifestation of this disease.


Asunto(s)
Proteínas del Ojo/fisiología , Proteínas Fúngicas , Precursores del ARN/metabolismo , Empalme del ARN/fisiología , Retinitis Pigmentosa/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Empalmosomas/metabolismo , Análisis Mutacional de ADN , Proteínas del Ojo/genética , Genes Dominantes , Prueba de Complementación Genética , Células HeLa , Humanos , Sustancias Macromoleculares , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA