Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 592(7853): 296-301, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731931

RESUMEN

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Asunto(s)
Aterosclerosis/patología , Hematopoyesis Clonal , Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Médula Ósea/metabolismo , Caspasa 1/metabolismo , Caspasas Iniciadoras/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucina-1beta/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Fosfato/metabolismo , Piroptosis , RNA-Seq , Análisis de la Célula Individual
2.
Blood ; 143(15): 1539-1550, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38142422

RESUMEN

ABSTRACT: JAK2 V617F (JAK2VF) clonal hematopoiesis (CH) has been associated with atherothrombotic cardiovascular disease (CVD). We assessed the impact of Jak2VF CH on arterial thrombosis and explored the underlying mechanisms. A meta-analysis of 3 large cohort studies confirmed the association of JAK2VF with CVD and with platelet counts and adjusted mean platelet volume (MPV). In mice, 20% or 1.5% Jak2VF CH accelerated arterial thrombosis and increased platelet activation. Megakaryocytes in Jak2VF CH showed elevated proplatelet formation and release, increasing prothrombogenic reticulated platelet counts. Gp1ba-Cre-mediated expression of Jak2VF in platelets (VFGp1ba) increased platelet counts to a similar level as in 20% Jak2VF CH mice while having no effect on leukocyte counts. Like Jak2VF CH mice, VFGp1ba mice showed enhanced platelet activation and accelerated arterial thrombosis. In Jak2VF CH, both Jak2VF and wild-type (WT) platelets showed increased activation, suggesting cross talk between mutant and WT platelets. Jak2VF platelets showed twofold to threefold upregulation of COX-1 and COX-2, particularly in young platelets, with elevated cPLA2 activation and thromboxane A2 production. Compared with controls, conditioned media from activated Jak2VF platelets induced greater activation of WT platelets that was reversed by a thromboxane receptor antagonist. Low-dose aspirin ameliorated carotid artery thrombosis in VFGp1ba and Jak2VF CH mice but not in WT control mice. This study shows accelerated arterial thrombosis and platelet activation in Jak2VF CH with a major role of increased reticulated Jak2VF platelets, which mediate thromboxane cross talk with WT platelets and suggests a potential beneficial effect of aspirin in JAK2VF CH.


Asunto(s)
Hematopoyesis Clonal , Trombosis , Animales , Humanos , Ratones , Aspirina/farmacología , Aspirina/uso terapéutico , Plaquetas/metabolismo , Ratones Noqueados , Activación Plaquetaria , Trombosis/genética , Trombosis/metabolismo
3.
J Lipid Res ; 65(4): 100534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522750

RESUMEN

The deposition of cholesterol-rich lipoproteins in the arterial wall triggers macrophage inflammatory responses, which promote atherosclerosis. The NLRP3 inflammasome aggravates atherosclerosis; however, cellular mechanisms connecting macrophage cholesterol accumulation to inflammasome activation are poorly understood. We investigated the mechanisms of NLRP3 inflammasome activation in cholesterol-loaded macrophages and in atherosclerosis-prone Ldlr-/- mice with defects in macrophage cholesterol efflux. We found that accumulation of cholesterol in macrophages treated with modified LDL or cholesterol crystals, or in macrophages defective in the cholesterol efflux promoting transporters ABCA1 and ABCG1, leads to activation of NLRP3 inflammasomes as a result of increased cholesterol trafficking from the plasma membrane to the ER, via Aster-B. In turn, the accumulation of cholesterol in the ER activates the inositol triphosphate-3 receptor, CaMKII/JNK, and induces NLRP3 deubiquitylation by BRCC3. An NLRP3 deubiquitylation inhibitor or deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex, suppressed inflammasome activation, neutrophil extracellular trap formation (NETosis), and atherosclerosis in vivo. These results identify a link between the trafficking of cholesterol to the ER, NLRP3 deubiquitylation, inflammasome activation, and atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Colesterol , Retículo Endoplásmico , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ratones , Colesterol/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Retículo Endoplásmico/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Transporte Biológico , Ratones Noqueados
4.
Circulation ; 148(22): 1764-1777, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37781816

RESUMEN

BACKGROUND: Clonal hematopoiesis (CH) has emerged as an independent risk factor for atherosclerotic cardiovascular disease, with activation of macrophage inflammasomes as a potential underlying mechanism. The NLRP3 (NLR family pyrin domain containing 3) inflammasome has a key role in promoting atherosclerosis in mouse models of Tet2 CH, whereas inhibition of the inflammasome product interleukin-1ß appeared to particularly benefit patients with TET2 CH in CANTOS (Cardiovascular Risk Reduction Study [Reduction in Recurrent Major CV Disease Events]). TET2 is an epigenetic modifier that decreases promoter methylation. However, the mechanisms underlying macrophage NLRP3 inflammasome activation in TET2 (Tet methylcytosine dioxygenase 2) deficiency and potential links with epigenetic modifications are poorly understood. METHODS: We used cholesterol-loaded TET2-deficient murine and embryonic stem cell-derived isogenic human macrophages to evaluate mechanisms of NLRP3 inflammasome activation in vitro and hypercholesterolemic Ldlr-/- mice modeling TET2 CH to assess the role of NLRP3 inflammasome activation in atherosclerosis. RESULTS: Tet2 deficiency in murine macrophages acted synergistically with cholesterol loading in cell culture and with hypercholesterolemia in vivo to increase JNK1 (c-Jun N-terminal kinase 1) phosphorylation and NLRP3 inflammasome activation. The mechanism of JNK (c-Jun N-terminal kinase) activation in TET2 deficiency was increased promoter methylation and decreased expression of the JNK-inactivating dual-specificity phosphatase Dusp10. Active Tet1-deadCas9-targeted editing of Dusp10 promoter methylation abolished cholesterol-induced inflammasome activation in Tet2-deficient macrophages. Increased JNK1 signaling led to NLRP3 deubiquitylation and activation by the deubiquitinase BRCC3 (BRCA1/BRCA2-containing complex subunit 3). Accelerated atherosclerosis and neutrophil extracellular trap formation (NETosis) in Tet2 CH mice were reversed by holomycin, a BRCC3 deubiquitinase inhibitor, and also by hematopoietic deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex. Human TET2-/- macrophages displayed increased JNK1 and NLRP3 inflammasome activation, especially after cholesterol loading, with reversal by holomycin treatment, indicating human relevance. CONCLUSIONS: Hypercholesterolemia and TET2 deficiency converge on a common pathway of NLRP3 inflammasome activation mediated by JNK1 activation and BRCC3-mediated NLRP3 deubiquitylation, with potential therapeutic implications for the prevention of cardiovascular disease in TET2 CH.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Dioxigenasas , Hipercolesterolemia , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Colesterol/metabolismo , Hematopoyesis Clonal , Enzimas Desubicuitinizantes , Proteínas de Unión al ADN/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38747701

RESUMEN

Two Gram-stain-negative strains, designed SYSU M86414T and SYSU M84420, were isolated from marine sediment samples of the South China Sea (Sansha City, Hainan Province, PR China). These strains were aerobic and could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C), and in the presence of 0-10 % NaCl (w/v; optimum 3 %). The predominant respiratory menaquinone of strains SYSU M86414T and SYSU M84420 was MK-6. The primary cellular polar lipid was phosphatidylethanolamine. The major cellular fatty acids (>10 %) in both strains were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The DNA G+C content of strains SYSU M86414T and SYSU M84420 were both 42.10 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that these novel strains belonged to the genus Flagellimonas and strain SYSU M86414T showed the highest 16S rRNA gene sequence similarity to Flagellimonas marinaquae JCM 11811T (98.83 %), followed by Flagellimonas aurea BC31-1-A7T (98.62 %), while strain SYSU M84420 had highest 16S rRNA gene sequence similarity to F. marinaquae JCM 11811T (98.76 %) and F. aurea BC31-1-A7T (98.55 %). Based on the results of polyphasic analyses, strains SYSU M86414T and SYSU M84420 should be considered to represent a novel species of the genus Flagellimonas, for which the name Flagellimonas halotolerans sp. nov. is proposed. The type strain of the proposed novel isolate is SYSU M86414T (=GDMCC 1.3806T=KCTC 102040T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Filogenia , ARN Ribosómico 16S , Agua de Mar , Análisis de Secuencia de ADN , Vitamina K 2 , China , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , Ácidos Grasos/análisis , Agua de Mar/microbiología , ADN Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis , Fosfatidiletanolaminas , Datos de Secuencia Molecular
6.
Diabetes Obes Metab ; 26(2): 602-610, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37936340

RESUMEN

AIM: To assess temporal trends of chronic kidney disease (CKD) attributable to type 2 diabetes (T2D) globally and in five sociodemographic index (SDI) regions. MATERIALS AND METHODS: We extracted the population data and CKD burden attributable to T2D from the Global Burden of Disease Study 2019. We evaluated the trends of disability-adjusted life years (DALYs), mortality, prevalence and incidence through age-period-cohort modelling, and calculated net drifts (overall annual percentage changes), local drifts (annual percentage changes in each age group), longitudinal age curves (fitted longitudinal age-specific rates), period relative risks (RRs) and cohort RRs. RESULTS: From 1990 to 2019, the global burden of CKD attributable to T2D showed increasing trends in general. The burden of CKD attributable to T2D was highest in the middle SDI region and lowest in the low SDI region. Age effects increased with age, and peaked at the ages of 75-79 and 80-84 years for incidence and prevalence, respectively. Period RRs in the burden of CKD attributable to T2D increased, with the high SDI being the most remarkable in DALYs and mortality, and the middle SDI being the most notable in incidence. Cohort RRs showed unfavourable trends in incidence and prevalence among recent cohorts. CONCLUSIONS: After a lengthy period of multi-initiative diabetes management, the high-middle SDI region exhibited improvement. However, unresolved issues and improvement gaps were still remarkable. Future efforts to reduce the burden of CKD attributable to T2D in the population should prioritize addressing the unfavourable patterns identified.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Renal Crónica , Humanos , Años de Vida Ajustados por Calidad de Vida , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Carga Global de Enfermedades , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Estudios de Cohortes
7.
Inflamm Res ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152299

RESUMEN

Acute lung injury (ALI) is caused by a variety of intrapulmonary and extrapulmonary factors and is associated with high morbidity and mortality. Oxidative stress is an important part of the pathological mechanism of ALI. Ferroptosis is a mode of programmed cell death distinguished from others and characterized by iron-dependent lipid peroxidation. This article reviews the metabolic regulation of ferroptosis, its role in the pathogenesis of ALI, and the use of ferroptosis as a therapeutic target regarding the pharmacological treatment of ALI.

8.
Inflamm Res ; 73(6): 997-1018, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615296

RESUMEN

BACKGROUND: ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS. METHODS: The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented. CONCLUSION: Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.


Asunto(s)
Lesión Pulmonar Aguda , Necroptosis , Humanos , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inmunología , Animales , Síndrome de Dificultad Respiratoria/patología , Autofagia , Apoptosis
9.
J Opt Soc Am A Opt Image Sci Vis ; 41(6): 1027-1036, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856410

RESUMEN

The correlation and polarization singularities as the important parameters of a radially polarized Gaussian Schell-model vortex beam propagating in oceanic turbulence have been investigated in detail. On the one hand, the correlation singularity of the beam will first split, and then generate new correlation singularities, and finally vanish in pairs. The longer the propagating distance, the larger the rate of dissipation of mean-square temperature, and the lower initial correlation lengths reduce the stability of correlation singularities. On the other hand, polarization singularities also split during transmission. The different initial correlation lengths cause the uneven distribution of polarization singularities, and the high order topological charge leads to the generation of new polarization singularities at short distances. Our numerical findings may be of great significance for detection and imaging of the oceanic optical telecommunication links.

10.
BMC Pediatr ; 24(1): 157, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443865

RESUMEN

BACKGROUND: Chorioamnionitis (CA) can cause multiple organ injuries in premature neonates, particularly to the lungs. Different opinions exist regarding the impact of intrauterine inflammation on neonatal respiratory distress syndrome (NRDS) and bronchopulmonary dysplasia (BPD). We aim to systematically review the relationship between CA or Funisitis (FV) and lung injury among preterm infants. METHODS: We electronically searched PubMed, EMbase, the Cochrane library, CNKI, and CMB for cohort studies from their inception to March 15, 2023. Two reviewers independently screened literature, gathered data, and did NOS scale of included studies. The meta-analysis was performed using RevMan 5.3. RESULTS: Sixteen observational studies including 68,397 patients were collected. Meta-analysis showed CA or FV increased the lung injury risk (OR = 1.43, 95%CI: 1.06-1.92). Except for histological chorioamnionitis (HCA) (OR = 0.72, 95%CI: 0.57-0.90), neither clinical chorioamnionitis (CCA) (OR = 1.86, 95%CI: 0.93-3.72) nor FV (OR = 1.23, 95%CI: 0.48-3.15) nor HCA with FV (OR = 1.85, 95%CI: 0.15-22.63) had statistical significance in NRDS incidence. As a result of stratification by grade of HCA, HCA (II) has a significant association with decreased incidence of NRDS (OR = 0.48, 95%CI: 0.35-0.65). In terms of BPD, there is a positive correlation between BPD and CA/FV (CA: OR = 3.18, 95%CI: 1.68-6.03; FV: OR = 6.36, 95%CI: 2.45-16.52). Among CA, HCA was positively associated with BPD (OR = 2.70, 95%CI: 2.38-3.07), whereas CCA was not associated with BPD (OR = 2.77, 95%CI: 0.68-11.21). HCA and moderate to severe BPD (OR = 25.38, 95%CI: 7.13-90.32) showed a positive correlation, while mild BPD (OR = 2.29, 95%CI: 0.99-5.31) did not. CONCLUSION: Currently, evidence suggests that CA or FV increases the lung injury incidence in premature infants. For different types of CA and FV, HCA can increase the incidence of BPD while decreasing the incidence of NRDS. And this "protective effect" only applies to infants under 32 weeks of age. Regarding lung injury severity, only moderate to severe cases of BPD were positively correlated with CA.


Asunto(s)
Displasia Broncopulmonar , Corioamnionitis , Lesión Pulmonar , Síndrome de Dificultad Respiratoria del Recién Nacido , Recién Nacido , Femenino , Embarazo , Lactante , Humanos , Corioamnionitis/epidemiología , Recien Nacido Prematuro , Inflamación , Displasia Broncopulmonar/epidemiología , Displasia Broncopulmonar/etiología , Síndrome de Dificultad Respiratoria del Recién Nacido/epidemiología , Síndrome de Dificultad Respiratoria del Recién Nacido/etiología
11.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380735

RESUMEN

Fruit softening is a key component of the irreversible ripening program, contributing to the palatability necessary for frugivore-mediated seed dispersal. The underlying textural changes are complex and result from cell wall remodeling and changes in both cell adhesion and turgor. While a number of transcription factors (TFs) that regulate ripening have been identified, these affect most canonical ripening-related physiological processes. Here, we show that a tomato fruit ripening-specific LATERAL ORGAN BOUNDRIES (LOB) TF, SlLOB1, up-regulates a suite of cell wall-associated genes during late maturation and ripening of locule and pericarp tissues. SlLOB1 repression in transgenic fruit impedes softening, while overexpression throughout the plant under the direction of the 35s promoter confers precocious induction of cell wall gene expression and premature softening. Transcript and protein levels of the wall-loosening protein EXPANSIN1 (EXP1) are strongly suppressed in SlLOB1 RNA interference lines, while EXP1 is induced in SlLOB1-overexpressing transgenic leaves and fruit. In contrast to the role of ethylene and previously characterized ripening TFs, which are comprehensive facilitators of ripening phenomena including softening, SlLOB1 participates in a regulatory subcircuit predominant to cell wall dynamics and softening.


Asunto(s)
Pared Celular/fisiología , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Carotenoides , Etilenos/metabolismo , Almacenamiento de Alimentos , Silenciador del Gen , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética
12.
J Environ Manage ; 364: 121430, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38875983

RESUMEN

Optimization and control of wastewater treatment process (WTP) can contribute to cost reduction and efficiency. A wastewater treatment process multi-objective optimization (WTPMO) framework is proposed in this paper to provide suggestions for decision-making in setting parameters of WTP. Firstly, the prediction models based on Extreme Gradient Boosting (XGB) with Bayesian optimization (BO) are developed for predicting effluent water quality (EQ) and energy consumption (EC) for different influent quality and process parameter settings. Then, the SHapley Additive exPlanations (SHAP) algorithm is used to complement the interpretability of machine learning to quantitatively evaluate the impact of different features on the predicted targets. Finally, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the Technique for Ordering Preferences on Similarity of Ideal Solutions (TOPSIS) is introduced to solve and make decisions on the multi-objective optimization problem. The WTPMO applicability is validated on Benchmark Simulation Model 1 (BSM1). The results show that BOXGB achieves accurate prediction for EQ and EC with R2 values of 0.923 and 0.965, respectively, indicating that BO can effectively select the model hyperparameters in XGB. Based on SHAP supplemented the interpretability of the model to fully explain how the influent water quality and decision variables affect the EQ and EC of the WTP. In addition, the optimized process parameters are determined based on NSGA-II and TOPSIS, and the EC optimization rate is 1.552% while guaranteeing water quality compliance. Overall, this research can effectively achieve the optimization of WTP, ensure that the effluent water quality meets the standards while reducing energy consumption, assist Wastewater treatment plants (WWTPs) to achieve more intelligent and efficient operation and maintenance management, and provide strong support for environmental protection and sustainable development goals.


Asunto(s)
Algoritmos , Teorema de Bayes , Aprendizaje Automático , Eliminación de Residuos Líquidos , Aguas Residuales , Calidad del Agua , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Modelos Teóricos
13.
J Gene Med ; 25(11): e3552, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37337736

RESUMEN

BACKGROUND: ß-1,4-N-Acetyl galactosaminyltransferase1 (B4GALNT1) has been reported to play important roles in tumor progression and metastasis. Herein, we investigate the oncogenic roles of B4GALNT1 for hepatocellular carcinoma (HCC) based on immune microenvironment. METHODS: The Cancer Genome Atlas database and Genotype-Tissue Expression, cBioportal, ImmuCellAI, TIMER2 and other databases were searched to analyze the expression and clinical applications of B4GALNT1 in liver cancer patients. Kaplan-Meier survival analysis, Cox regression analysis, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis were utilized. Moreover, western blot assay, immune histochemistry staining, Cell Counting Kit-8 (CCK-8) assay, invasion and migration assay were performed to evaluate the function of B4GALNT1 in HCC. RESULTS: B4GALNT1 is overexpressed in 14 tumors, and the mRNA expression levels of B4GALNT1 were remarkably elevated in most tumor types, including HCC. In addition, B4GALNT1 expression was an independent prognostic factor, and a low expression of B4GALNT1 showed a better overall survival and disease-specific recurrence-free survival in patients with HCC. Gene set variation analysis indicated that B4GALNT1 presented a positive correlation with the epithelial-mesenchymal transition (EMT) pathway in HCC. B4GALNT1 expression was closely associated with immune activation genes in the HCC microenvironment. Moreover, B4GALNT1 expression was higher in HCC tissue than that in surrounding tissues. B4GALNT1 promoted the expression of apoptosis-related or EMT-related proteins and then decreased the expression of Bcl-2 and Bcl-xl in HCC cells, suggesting that B4GALNT1 knockdown significantly inhibited the proliferation and invasion of HCC cells. CONCLUSIONS: B4GALNT1 may promote HCC development through regulating the EMT pathway, which suggests that B4GALNT1 may serve as a promising predictive biomarker and a potential therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biomarcadores , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Microambiente Tumoral/genética
14.
Brief Bioinform ; 22(2): 1378-1386, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33423067

RESUMEN

Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core. CEP was potent to reverse most dysregulated genes and pathways in infected cells including ER stress/unfolded protein response and HSF1-mediated heat shock response. Additionally, single-cell transcriptomes also confirmed that genes of cellular stress responses and autophagy pathways were enriched in several peripheral blood mononuclear cells populations from COVID-19 patients. In summary, this study uncovered the transcriptome of a SARS-CoV-2-related coronavirus infection model and anti-viral activities of CEP, providing evidence for CEP as a promising therapeutic option for SARS-CoV-2 infection.


Asunto(s)
Antivirales/farmacología , Bencilisoquinolinas/farmacología , SARS-CoV-2/efectos de los fármacos , Transcriptoma , Animales , Chlorocebus aethiops , Homeostasis , Humanos , Células Vero
15.
Artículo en Inglés | MEDLINE | ID: mdl-37773605

RESUMEN

A Gram-stain-negative, aerobic, motile, ovoid-shaped and yellow-coloured strain, designated SYSU M79828T, was isolated from seawater collected from the South China Sea. Growth of this strain was observed at 4-37 °C (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 7.0) and with 0-6% NaCl (optimum, 3.0 %, w/v). The respiratory quinone was found to be Q-10. Major fatty acid constituents were C18 : 1 ω7c/C18 : 1 ω6c, C18 : 1 ω7c11-methyl and C18 : 0 (>5 % of total). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphoglycolipid, two unidentified phospholipid, one unidentified lipid and an unidentified glycolipid. The genomic DNA G+C content was 64.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that strain SYSU M79828T belonged to the genus Cereibacter and had the highest sequences similarity to 'Rhodobacter xinxiangensis' TJ48T (98.41 %). Based on 16S rRNA gene phylogeny, physiological and chemotaxonomic characterizations, we consider that strain SYSU M79828T represents a novel species of the genus Cereibacter, for which the name Cereibacter flavus sp. nov. is proposed. The type strain is SYSU M79828T (=GDMCC 1.3803T=KCTC 92893T). In addition, according to the results of phylogenetic analysis and similar taxonomic characteristics, we propose that Rhodobacter alkalitolerans should be reclassified as Cereibacter alkalitolerans comb. nov.


Asunto(s)
Ácidos Grasos , Rhodobacteraceae , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Rhodobacter , Agua de Mar , China
16.
Arterioscler Thromb Vasc Biol ; 42(6): 719-731, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35477277

RESUMEN

BACKGROUND: Cholesterol loaded macrophage foam cells are a prominent feature of atherosclerotic plaques. Single-cell RNA sequencing has identified foam cells as TREM2 (triggering receptor expressed on myeloid cells 2) positive populations with low expression of inflammatory genes, resembling the TREM2 positive microglia of neurodegenerative diseases. Cholesterol loading of macrophages in vitro results in activation of LXR (liver X receptor) transcription factors and suppression of inflammatory genes. METHODS: To test the hypothesis that LXRs mediate anti-inflammatory effects in Trem2 expressing atherosclerotic plaque foam cells, we performed RNA profiling on plaque cells from hypercholesterolemic mice with myeloid LXR deficiency. RESULTS: Myeloid LXR deficiency led to a dramatic increase in atherosclerosis with increased monocyte entry, foam cell formation, and plaque inflammation. Bulk cell-RNA profiling of plaque myeloid cells showed prominent upregulation of inflammatory mediators including oxidative, chemokine, and chemotactic genes. Single-cell RNA sequencing revealed increased numbers of foamy TREM2-expressing macrophages; however, these cells had reduced expression of the Trem2 gene expression module, including phagocytic and cholesterol efflux genes, and had switched to a proinflammatory and proliferative phenotype. Expression of Trem2 was suppressed by inflammatory signals but not directly affected by LXR activation in bone marrow-derived macrophages. CONCLUSIONS: Our current studies reveal the key role of macrophage LXRs in promoting the Trem2 gene expression program and in suppressing inflammation in foam cells of atherosclerotic plaques.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , ARN , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
17.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 168-173, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37715397

RESUMEN

Chronic active EBV infection (CAEBV) is associated with poor prognosis and high mortality. We performed bioinformatics analysis to screen out key genes associated with CAEBV. Weighted gene co-expression network analysis (WGCNA) was used to identify the gene module which was most correlated with pediatric CAEBV. Furthermore, the differentially expressed genes (DEGs) between pediatric acute infectious mononucleosis (AIM) and pediatric CAEBV were investigated. Least absolute shrinkage and selection operator (LASSO) and random forest then were performed to identify the key variables associated with pediatric CAEBV. We also explored the correlation between these hub genes with EBV infection related pathway and immune cell abundance. Compared with pediatric AIM, 1561 DEGs were up-regulated in pediatric CAEBV, and these genes were mainly enriched in inflammatory response and inflammation-related pathways. WGCNA analysis showed that genes in blue module were mostly related to pediatric CAEBV. Genes in the blue module and DEGs are intersected to get 174 genes and these genes are also enriched in inflammatory response-related pathways. The key CAEBV-related genes were selected from these 174 genes by applying the random Forest and LASSO algorithm, resulting in TPST1, TNFSF8 and RAB3GAP1. These three genes showed good diagnostic performance in distinguishing pediatric CAEBV from pediatric AIM. Furthermore, Cibersort and GSEA analysis indicated that these three genes were positively correlated with myeloid cell enrichment and persistent EBV infection pathway, respectively. Our finding systematically analyzed the difference between AIM and CAEBV and identified TPST1, TNFSF8 and RAB3GAP1 were the key genes in the development of CAEBV.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Humanos , Niño , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Algoritmos , Biología Computacional , Perfilación de la Expresión Génica , Proteínas de Unión al GTP rab3
18.
Environ Res ; 237(Pt 1): 116938, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619626

RESUMEN

The prediction of effluent quality for wastewater treatment plants (WWTPs) has caused widespread concern due to its essential role in ensuring water quality standards and reducing energy consumption. However, the complex nonlinearity of WWTPs leads to difficulties in forecasting and less attention to forecast uncertainty. A novel ensemble water quality forecasting (EWQF) system is proposed that incorporates data preprocessing, point prediction and interval prediction. The system provides an accurate prediction of effluent quality and analyses this uncertainty, for enabling feed-forward control of WWTPs. Specifically, the original water quality data is decomposed into subsequences containing more information and less noise based on improved variational modal decomposition (IVMD). The optimal sub-model for each sub-series is selected from six prediction models based on the sub-model selection strategy, and the point prediction results for water quality are obtained by combining the prediction results of the sub-models. Robust and reliable prediction interval construction based on adaptive kernel density estimation. The results demonstrate that the EWQF achieves optimal point prediction results (R2 = 0.955). The EWQF interval prediction achieves the optimal coverage width criterion (CWC) for different confidence intervals and decision objectives. These results demonstrate that EWQF systems can perform excellent point and interval prediction.


Asunto(s)
Calidad del Agua , Predicción , Incertidumbre
19.
Environ Res ; 224: 115560, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36842699

RESUMEN

Accurate prediction of effluent total nitrogen (E-TN) can assist in feed-forward control of wastewater treatment plants (WWTPs) to ensure effluent compliance with standards while reducing energy consumption. However, multivariate time series prediction of E-TN is a challenge due to the complex nonlinearity of WWTPs. This paper proposes a novel prediction framework that combines a two-stage feature selection model, the Golden Jackal Optimization (GJO) algorithm, and a hybrid deep learning model, CNN-LSTM-TCN (CLT), aiming to effectively capture the nonlinear relationships of multivariate time series in WWTPs. Specifically, convolutional neural network (CNN), long short-term memory (LSTM), and temporal convolutional network (TCN) combined to build a hybrid deep learning model CNN-LSTM-TCN (CLT). A two-stage feature selection method is utilized to determine the optimal feature subset to reduce the complexity and improve the accuracy of the prediction model, and then, the feature subset is input into the CLT. The hyperparameters of the CLT are optimized using GJO to further improve the prediction performance. Experiments indicate that the two-stage feature selection model learns the optimal feature subset to predict best, and the GJO-CLT achieves the best performance for different backtracking windows and prediction steps. These results demonstrate that the prediction system excels in the task of multivariate water quality time series prediction of WWTPs.


Asunto(s)
Aprendizaje Profundo , Calidad del Agua , Algoritmos , Inteligencia , Redes Neurales de la Computación , Nitrógeno
20.
J Opt Soc Am A Opt Image Sci Vis ; 40(10): 1895-1907, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855545

RESUMEN

Optical wireless communications applications are restricted by oceanic media-induced beam quality degradation. However, modulating the coherence and polarization structures of the laser beams can effectively diminish the negative influence of oceanic turbulence on the beams. The average intensity of a radially polarized Laguerre-Gaussian Schell-model vortex (RPLGSMV) beam propagating through oceanic turbulence is explored by employing the extended Huygens-Fresnel principle. We found that the average intensity of an RPLGSMV beam is greatly affected by oceanic turbulence with a large rate of dissipation of the mean-square temperature and a large relative strength of the temperature and salinity fluctuations as well as the small rate of dissipation of the turbulent kinetic energy per unit mass of fluid and small Kolmogorov microscale. It was also found that a RPLGSMV beam with a larger radial index, topological charge, initial coherent length, and beam waist has a stronger anti-turbulence ability. Our numerical findings may be of great significance for the detection and imaging of oceanic optical telecommunications links.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA