Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 601(7891): 69-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987213

RESUMEN

The 660-kilometre seismic discontinuity is the boundary between the Earth's lower mantle and transition zone and is commonly interpreted as being due to the dissociation of ringwoodite to bridgmanite plus ferropericlase (post-spinel transition)1-3. A distinct feature of the 660-kilometre discontinuity is its depression to 750 kilometres beneath subduction zones4-10. However, in situ X-ray diffraction studies using multi-anvil techniques have demonstrated negative but gentle Clapeyron slopes (that is,  the ratio between pressure and temperature changes) of the post-spinel transition that do not allow a significant depression11-13. On the other hand, conventional high-pressure experiments face difficulties in accurate phase identification due to inevitable pressure changes during heating and the persistent presence of metastable phases1,3. Here we determine the post-spinel and akimotoite-bridgmanite transition boundaries by multi-anvil experiments using in situ X-ray diffraction, with the boundaries strictly based on the definition of phase equilibrium. The post-spinel boundary has almost no temperature dependence, whereas the akimotoite-bridgmanite transition has a very steep negative boundary slope at temperatures lower than ambient mantle geotherms. The large depressions of the 660-kilometre discontinuity in cold subduction zones are thus interpreted as the akimotoite-bridgmanite transition. The steep negative boundary of the akimotoite-bridgmanite transition will cause slab stagnation (a stalling of the slab's descent) due to significant upward buoyancy14,15.

2.
Nature ; 599(7886): 599-604, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34819685

RESUMEN

Amorphous materials inherit short- and medium-range order from the corresponding crystal and thus preserve some of its properties while still exhibiting novel properties1,2. Due to its important applications in technology, amorphous carbon with sp2 or mixed sp2-sp3 hybridization has been explored and prepared3,4, but synthesis of bulk amorphous carbon with sp3 concentration close to 100% remains a challenge. Such materials inherit the short-/medium-range order of diamond and should also inherit its superior properties5. Here, we successfully synthesized millimetre-sized samples-with volumes 103-104 times as large as produced in earlier studies-of transparent, nearly pure sp3 amorphous carbon by heating fullerenes at pressures close to the cage collapse boundary. The material synthesized consists of many randomly oriented clusters with diamond-like short-/medium-range order and possesses the highest hardness (101.9 ± 2.3 GPa), elastic modulus (1,182 ± 40 GPa) and thermal conductivity (26.0 ± 1.3 W m-1 K-1) observed in any known amorphous material. It also exhibits optical bandgaps tunable from 1.85 eV to 2.79 eV. These discoveries contribute to our knowledge about advanced amorphous materials and the synthesis of bulk amorphous materials by high-pressure and high-temperature techniques and may enable new applications for amorphous solids.

3.
Nature ; 565(7738): 218-221, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626940

RESUMEN

Laboratory measurements of sound velocities of high-pressure minerals provide crucial information on the composition and constitution of the deep mantle via comparisons with observed seismic velocities. Calcium silicate (CaSiO3) perovskite (CaPv) is a high-pressure phase that occurs at depths greater than about 560 kilometres in the mantle1 and in the subducting oceanic crust2. However, measurements of the sound velocity of CaPv under the pressure and temperature conditions that are present at such depths have not previously been performed, because this phase is unquenchable (that is, it cannot be physically recovered to room conditions) at atmospheric pressure and adequate samples for such measurements are unavailable. Here we report in situ X-ray diffraction and ultrasonic-interferometry sound-velocity measurements at pressures of up to 23 gigapascals and temperatures of up to 1,700 kelvin (similar to the conditions at the bottom of the mantle transition region) using sintered polycrystalline samples of cubic CaPv converted from bulk glass and a multianvil apparatus. We find that cubic CaPv has a shear modulus of 126 ± 1 gigapascals (uncertainty of one standard deviation), which is about 26 per cent lower than theoretical predictions3,4 (about 171 gigapascals). This value leads to substantially lower sound velocities of basaltic compositions than those predicted for the pressure and temperature conditions at depths between 660 and 770 kilometres. This suggests accumulation of basaltic crust in the uppermost lower mantle, which is consistent with the observation of low-seismic-velocity signatures below 660 kilometres5,6 and the discovery of CaPv in natural diamond of super-deep origin7. These results could contribute to our understanding of the existence and behaviour of subducted crust materials in the deep mantle.

4.
Genomics ; 116(1): 110762, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104669

RESUMEN

Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.


Asunto(s)
Carcinogénesis , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Neoplasias , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Carcinogénesis/genética , Daño del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Neoplasias/genética , Neoplasias/patología
5.
Inorg Chem ; 63(2): 1214-1224, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159054

RESUMEN

Spin transition (ST) compounds have been extensively studied because of the changes in rich physicochemical properties accompanying the ST process. The study of ST mainly focuses on the temperature-induced spin transition (TIST). To further understand the ST, we explore the pressure response behavior of TIST and pressure-induced spin transition (PIST) of the 2D Hofmann-type ST compounds [Fe(Isoq)2M(CN)4] (Isoq-M) (M = Pt, Pd, Isoq = isoquinoline). The TISTs of both Isoq-Pt and Isoq-Pd compounds exhibit anomalous pressure response, where the transition temperature (T1/2) exhibits a nonlinear pressure dependence and the hysteresis width (ΔT1/2) exhibits a nonmonotonic behavior with pressure, by the synergistic influence of the intermolecular interaction and the distortion of the octahedral coordination environment. And the distortion of the octahedra under critical pressures may be the common behavior of 2D Hofmann-type ST compounds. Moreover, ΔT1/2 is increased compared with that before compression because of the partial irreversibility of structural distortion after decompression. At room temperature, both compounds exhibit completely reversible PIST. Because of the greater change in mechanical properties before and after ST, Isoq-Pt exhibits a more abrupt ST than Isoq-Pd. In addition, it is found that the hydrostatic properties of the pressure transfer medium (PTM) significantly affect the PIST due to their influence on spin-domain formation.

6.
Inorg Chem ; 62(16): 6263-6273, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37032490

RESUMEN

We report a novel high-pressure coupling (HPC) reaction that couples the nitridation of Re with high-pressure solid-state metathesis (HPSSM) of Fe3N to produce a spherical bulk RexN/Fe3N composite. Compared with conventional methods, upon coupling of the HPSSM reactions, the synthetic pressure for Re nitridation was successfully reduced from 13 to 10 GPa (for Re3N) and from 20 to 15 GPa (for Re2N). The product RexN species would be surrounded by product Fe3N, resulting in a spherical bulk RexN/Fe3N composite (x = 2 or 3). The composite exhibits a soft magnetic behavior, and the content of nitrogen in RexN (x = 2 or 3) was controlled by adjusting the P-T conditions. The HPC reaction establishes a new approach for the bulk synthesis of 5d transition metal nitride.

7.
J Synchrotron Radiat ; 29(Pt 2): 409-423, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254304

RESUMEN

Penetrating, high-energy synchrotron X-rays are in strong demand, particularly for high-pressure research in physics, chemistry and geosciences, and for materials engineering research under less extreme conditions. A new high-energy wiggler beamline P61 has been constructed to meet this need at PETRA III in Hamburg, Germany. The first part of the paper offers an overview of the beamline front-end components and beam characteristics. The second part describes the performance of the instrumentation and the latest developments at the P61B endstation. Particular attention is given to the unprecedented high-energy photon flux delivered by the ten wigglers of the PETRA III storage ring and the challenges faced in harnessing this amount of flux and heat load in the beam. Furthermore, the distinctiveness of the world's first six-ram Hall-type large-volume press, Aster-15, at a synchrotron facility is described for research with synchrotron X-rays. Additionally, detection schemes, experimental strategies and preliminary data acquired using energy-dispersive X-ray diffraction and radiography techniques are presented.

8.
Angew Chem Int Ed Engl ; 61(48): e202210836, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36165958

RESUMEN

Lanthanide metal-organic frameworks are of great interest in the development of photoluminescence (PL) materials owing to their structural tunability and intrinsic features of lanthanide elements. However, there exists some limitations arising from poor matching with metal ions, thereby exhibiting a weak ligand-to-metal energy transfer (LMET) process. Here we demonstrate a pressure-treated strategy for achieving high PL performance in green-emitting Tb(BTC)(H2 O)6 . The PL quantum yield of pressure-treated sample increased from 50.6 % to 90.4 %. We found that the enhanced hydrogen bonds locked the conjugated configuration formed by two planes of carboxyl group and benzene ring, enabling the promoted intersystem crossing to effectively drive LMET. Moreover, the optimized singlet and triplet states also validated the facilitated LMET process. This work opens the opportunity of structure optimization to improve PL performance in MOFs by pressure-treated engineering.

9.
Environ Sci Technol ; 55(19): 13082-13092, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34554745

RESUMEN

Resolving chemical/biological drivers of P behavior around lowland/flooded rice roots remains a challenge because of the heterogeneity of the plant-soil interactions, compounded by sampling and analytical constraints. High-spatial-resolution (sub-mm) visualization enables these processes to be isolated, characterized, and deciphered. Here, three advanced soil imaging systems, diffusive gradients in thin-film technique coupled with laser ablation-ICPMS (DGT-LA-ICPMS), O2 planar optode, and soil zymography, were integrated. This trio of approaches was then applied to a rice life cycle study to quantify solute-P supply, through two dimensions, in situ, and low-disturbance high-resolution (HR) chemical imaging. This allowed mechanisms of P release to be delineated by O2, Fe, and phosphatase activity mapping at the same scale. HR-DGT revealed P depletion around both living and dead rice roots but with highly spatially variable Fe/P ratios (∼0.2-12.0) which aligned with changing redox conditions and root activities. Partnering of HR-DGT and soil zymography revealed concurrent P depletion and phosphatase hotspots in the rhizosphere and detritusphere zones (Mantel: 0.610-0.810, p < 0.01). This close affinity between these responses (Pearson correlation: -0.265 to -0.660, p < 0.01) cross-validates the measurements and reaffirms that P depletion stimulates phosphatase activity and Porg mineralization. The µ-scale biogeochemical landscape of rice rhizospheres and detritusphere, as documented here, needs greater consideration when implementing interventions to improve sustainable P nutrition.


Asunto(s)
Oryza , Contaminantes del Suelo , Fósforo , Raíces de Plantas/química , Rizosfera , Suelo , Contaminantes del Suelo/análisis
10.
BMC Pregnancy Childbirth ; 21(1): 688, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627184

RESUMEN

BACKGROUND: Fetal growth velocity standards have yet to be established for the Chinese population. This study aimed to establish such standards suitable for the Chinese population. METHODS: We performed a multicenter, population-based longitudinal cohort study including 9075 low-risk singleton pregnant women. Data were collected from the clinical records of 24 hospitals in 18 provinces of China. Demographic characteristics, reproductive history, fetal ultrasound measurements, and perinatal outcome data were collected. The fetal ultrasound measurements included biparietal diameter (BPD), abdominal circumference (AC), head circumference (HC), and femur diaphysis length (FDL). We used linear mixed models with cubic splines to model the trajectory of four ultrasound parameters and estimate fetal weight. Fetal growth velocity was determined by calculating the first derivative of fetal size curves. We also used logistic regression to estimate the association between fetal growth velocities in the bottom 10th percentile and adverse perinatal outcomes. RESULTS: Fetal growth velocity was not consistent over time or among individuals. The estimated fetal weight (EFW) steadily increased beginning at 12 gestational weeks and peaked at 35 gestational weeks. The maximum velocity was 211.71 g/week, and there was a steady decrease in velocity from 35 to 40 gestational weeks. The four ultrasound measurements increased in the early second trimester; BPD and HC peaked at 13 gestational weeks, AC at 14 gestational weeks, and FDL at 15 gestational weeks. BPD and HC also increased from 19 to 24 and 19 to 21 gestational weeks, respectively. EFW velocity in the bottom 10th percentile indicated higher risks of neonatal complications (odds ratio [OR] = 2.23, 95% confidence interval [CI]: 1.79-2.78) and preterm birth < 37 weeks (OR = 3.68, 95% CI: 2.64-5.14). Sensitivity analyses showed that EFW velocity in the bottom 10th percentile was significantly associated with more adverse pregnancy outcomes for appropriate-for-gestational age neonates. CONCLUSIONS: We established fetal growth velocity curves for the Chinese population based on real-world clinical data. Our findings demonstrated that Chinese fetal growth patterns are somewhat different from those of other populations. Fetal growth velocity could provide more information to understand the risk of adverse perinatal outcomes, especially for appropriate-for-gestational age neonates.


Asunto(s)
Desarrollo Fetal , Adulto , Peso al Nacer , China , Estudios de Cohortes , Femenino , Retardo del Crecimiento Fetal , Peso Fetal , Feto , Edad Gestacional , Gráficos de Crecimiento , Humanos , Recién Nacido , Estudios Longitudinales , Embarazo , Resultado del Embarazo , Ultrasonografía Prenatal
11.
J Environ Manage ; 297: 113306, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280864

RESUMEN

Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.


Asunto(s)
Pinus , Contaminantes del Suelo , Biomasa , Ecosistema , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
12.
Anal Chem ; 92(5): 3581-3588, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31916433

RESUMEN

In situ monitoring of Sb speciation improves the understanding of Sb biogeochemistry and toxicity in ecosystems. Precise measurement of Sb is a challenge due to its instability of oxidation and ultratrace concentration. The development of simple and reliable methods specific to SbIII measurement is not only appealing but essential for implementing regulations. Here, we present an in situ speciation analysis method for SbIII, using the diffusive gradients in thin films (DGT) technique, combined with mercapto-functionalized SBA-15 mesoporous silica nanoparticles (MSBA). Laboratory performance tests confirmed MSBA-DGT uptake was independent of pH (4-9) and ionic strength (0.1-200 mmol L-1). DGT devices equipped with MSBA-based binding gels showed a theoretically linear accumulation of SbIII and exhibited a high capacity for SbIII at 65 µg/gel disc, with negligible accumulation of SbV over a 72 h deployment. Compared with commercial 3-mercaptopropyl-functionalized silica (MFS), the nanosized MSBA facilitate its even distribution in the binding gels. Furthermore, the good selectivity and high homogeneity of the MSBA gel enabled it to be applied in a rice rhizosphere in conjunction with AgI gel to investigate the effects of sulfur application on the SbIII solubility. In summary, the newly developed MSBA-DGT provides a selective measurement of SbIII, showing potential for environmental monitoring and further application in understanding the biogeochemical process of Sb.


Asunto(s)
Antimonio/análisis , Dióxido de Silicio/química , Suelo/química , Difusión , Porosidad
13.
BMC Pregnancy Childbirth ; 20(1): 639, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081753

RESUMEN

BACKGROUND: Evidence-based medicine has shown that successful vaginal birth after cesarean (VBAC) is associated with fewer complications than an elective repeat cesarean. Although spontaneous vaginal births and reductions in cesarean delivery (CD) rates have been advocated, the risk factors for VBAC complications remain unclear and failed trials of labor (TOL) can lead to adverse pregnancy outcomes. METHODS: To construct an antepartum predictive scoring model for VBAC. Retrospective analysis of charts from 1062 women who underwent TOL at no less than 28 gestational weeks with vertex singletons and no more than one prior CD. RESULTS: We constructed our scoring model based on the following variables: maternal age, previous vaginal delivery, interdelivery interval (time between prior cesarean and the following delivery), presence of prior cesarean TOL, dystocia as prior CD indication, intertuberous diameter, maternal predelivery body mass index, gestational age at delivery, estimated fetal weight, and hypertensive disorders. Previous vaginal delivery was the most influential variable. The nomogram showed an area under the curve of 77.7% (95% confidence interval, 73.8-81.5%; sensitivity, 78%; specificity, 70%; cut-off, 13 points). The Kappa value to judge the consistency of the results between the predictive model and the actual results was 0.71(95% confidence interval 0.65-0.77) indicating strong consistency. We used the cut-off to divide the VBAC women into two groups according to the success of the TOL. The maternal and neonatal outcomes such as labor time, number of deliveries by midwives, postpartum hemorrhage, uterine rupture, neonatal asphyxia, puerperal infection were significantly different between the two groups. CONCLUSIONS: Our predictive scoring model incorporates easily ascertainable variables and can be used to personalize antepartum counselling for successful TOLs after cesareans.


Asunto(s)
Nomogramas , Complicaciones del Trabajo de Parto/epidemiología , Atención Prenatal/métodos , Esfuerzo de Parto , Parto Vaginal Después de Cesárea/efectos adversos , Adulto , Índice de Masa Corporal , Cesárea Repetida/efectos adversos , Cesárea Repetida/estadística & datos numéricos , Toma de Decisiones Clínicas/métodos , Técnicas de Apoyo para la Decisión , Distocia/epidemiología , Femenino , Edad Gestacional , Humanos , Edad Materna , Complicaciones del Trabajo de Parto/etiología , Complicaciones del Trabajo de Parto/prevención & control , Selección de Paciente , Embarazo , Atención Prenatal/estadística & datos numéricos , Curva ROC , Estudios Retrospectivos , Medición de Riesgo/métodos , Medición de Riesgo/estadística & datos numéricos , Factores de Riesgo , Parto Vaginal Después de Cesárea/estadística & datos numéricos
14.
BMC Pregnancy Childbirth ; 20(1): 538, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933509

RESUMEN

BACKGROUND: We aimed to develop and validate a nomogram for effective prediction of vaginal birth after cesarean (VBAC) and guide future clinical application. METHODS: We retrospectively analyzed data from hospitalized pregnant women who underwent trial of labor after cesarean (TOLAC), at the Fujian Provincial Maternity and Children's Hospital, between October 2015 and October 2017. Briefly, we included singleton pregnant women, at a gestational age above 37 weeks who underwent a primary cesarean section, in the study. We then extracted their sociodemographic data and clinical characteristics, and randomly divided the samples into training and validation sets. We employed the least absolute shrinkage and selection operator (LASSO) regression to select variables and construct VBAC success rate in the training set. Thereafter, we validated the nomogram using the concordance index (C-index), decision curve analysis (DCA), and calibration curves. Finally, we adopted the Grobman's model to perform comparisons with published VBAC prediction models. RESULTS: Among the 708 pregnant women included according to inclusion criteria, 586 (82.77%) patients were successfully for VBAC. Multivariate logistic regression models revealed that maternal height (OR, 1.11; 95% CI, 1.04 to 1.19), maternal BMI at delivery (OR, 0.89; 95% CI, 0.79 to 1.00), fundal height (OR, 0.71; 95% CI, 0.58 to 0.88), cervix Bishop score (OR, 3.27; 95% CI, 2.49 to 4.45), maternal age at delivery (OR, 0.90; 95% CI, 0.82 to 0.98), gestational age (OR, 0.33; 95% CI, 0.17 to 0.62) and history of vaginal delivery (OR, 2.92; 95% CI, 1.42 to 6.48) were independently associated with successful VBAC. The constructed predictive model showed better discrimination than that from the Grobman's model in the validation series (c-index 0.906 VS 0.694, respectively). On the other hand, decision curve analysis revealed that the new model had better clinical net benefits than the Grobman's model. CONCLUSIONS: VBAC will aid in reducing the rate of cesarean sections in China. In clinical practice, the TOLAC prediction model will help improve VBAC's success rate, owing to its contribution to reducing secondary cesarean section.


Asunto(s)
Cesárea , Nomogramas , Parto Vaginal Después de Cesárea/estadística & datos numéricos , Adulto , China , Femenino , Humanos , Embarazo , Estudios Retrospectivos
15.
Environ Sci Technol ; 53(10): 5717-5724, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31009209

RESUMEN

Although strong in vivo-in vitro correlations (IVIVCs) between relative bioavailability (RBA) and bioaccessibility of soil Pb were well reported, knowledge on the fractions of bioaccessible Pb in simulated gastrointestinal (GI) fluids that are available for absorption into the systemic circulation is limited. Here, Pb-RBA in 14 Pb-contaminated soils were assessed using an in vivo mouse bioassay and compared to Pb bioaccessibility by the gastrointestinal phase of the UBM (Unified Bioaccessibility research group of Europe (BARGE) Method) in vitro assay with and without 0.45 µm filtration of GI fluid. Results showed good IVIVC between Pb-RBA and Pb bioaccessibility without filtration ( r 2 = 0.62), while Pb bioaccessibility with filtration provided a poor correlation with Pb-RBA ( r 2 = 0.16). This suggested that besides dissolved Pb ions, Pb-complexes formed in the UBM gastrointestinal fluid might also contribute to bioavailable Pb. To ascertain this, DGT (diffusive gradients in thin-films) devices which can measure both Pb2+ ions and labile inorganic and organic Pb-complexes were introduced to the UBM fluids to measure Pb DGT-bioaccessibility, which showed strong correlation to Pb-RBA ( r 2 = 0.71). With increasing diffusive gel thickness which could enhance release of Pb ions from Pb-complexes, Pb DGT-bioaccessibility increased by 3.4-5.7 times, while inclusion of dialysis membrane within DGT devices significantly decreased Pb DGT-bioaccessibility by inhibiting diffusion of Pb complexes to binding gel. These results confirmed the contribution of Pb-complexes to Pb bioavailability, providing new insights to Pb bioavailability.


Asunto(s)
Contaminantes del Suelo , Animales , Bioensayo , Disponibilidad Biológica , Europa (Continente) , Ratones , Diálisis Renal , Suelo
16.
Anal Chem ; 90(16): 10016-10023, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30037218

RESUMEN

Widespread use of organophosphorus flame retardants (OPFRs) and their ubiquity in water results in the need for a robust and reliable monitoring technique to better understand their fate and environmental impact. In situ passive sampling using the diffusive gradients in thin-films (DGT) technique provides time-integrated data and is developed for measuring OPFRs here. Ultrasonic extraction of binding gels in methanol provided reliable recoveries for all tested OPFRs. Diffusion coefficients of TCEP, TCPP, TDCPP, TPrP, TBP, and TBEP in the agarose diffusive gel (25 °C) were obtained. The capacity of an HLB binding gel for OPFRs was >115 µg per disc, and the binding performance did not deteriorate with time up to 131 days. DGT performance is independent of typical environmental ranges of pH (3.12-9.71), ionic strength (0.1-500 mmol L-1), and dissolved organic matter (0-20 mg L-1), and also of diffusive layer thickness (0.64-2.14 mm) and deployment time (3-168 h). Negligible competition effects between OPFRs was found. DGT-measured concentrations of OPFRs in a wastewater treatment plant (WWTP) effluent (12-16 days) were comparable to those obtained by grab sampling, further verifying DGT's reliability for measuring OPFRs in waters.

17.
Environ Sci Technol ; 52(24): 14140-14148, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30431268

RESUMEN

The speciation of selenium (Se) controls its fate and behavior, determining both its biological and environmental activities. However, in situ monitoring of SeIV presents a significant challenge due to its sensitivity to redox change. A novel diffusive gradients in thin films (DGT) technique containing mercapto-, amino-bifunctionalized SBA15 mesoporous silica nanoparticles was developed and evaluated in a series of laboratory and field deployment tests. The SBA-DGT exhibited a linear accumulation of SeIV ( r2 > 0.997) over a 72 h deployment, with negligible accumulation of SeVI(<5%). Consistent prediction of SeIV occurred within ionic strength and pH ranges of 0.1-200 mmol L-1 and 3.6-8, respectively. Limits of detection of the SBA-DGT were 0.03 µg SeIV L-1, which is suitable for natural waters. Moreover, the properties of the bifunctionalized SBA15 enable it to be fabricated within ultrathin (0.05 mm) gel layers for use in conjunction with O2 planar optode imaging. This new sandwich sensor technology with SBA-DGT was validated by mapping the two-dimensional distribution of SeIV and oxygen simultaneously in rice rhizospheres. This study shows that SBA-DGT provides a selective measurement of SeIV in situ, demonstrating its potential for both environmental monitoring and as a research tool for improving our understanding of Se biogeochemical processes.


Asunto(s)
Nanopartículas , Selenio , Monitoreo del Ambiente , Dióxido de Silicio , Suelo
18.
Ecotoxicol Environ Saf ; 145: 207-213, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28735157

RESUMEN

Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K+) and cadmium (Cd2+) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K+ and Cd2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K+ and Cd2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations.


Asunto(s)
Hidróxido de Aluminio/química , Cadmio/metabolismo , Compuestos Férricos/química , Oryza/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Potasio/metabolismo , Adhesividad , Adsorción , Electroquímica , Oryza/química , Oryza/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Suelo/química , Propiedades de Superficie
19.
J Chem Phys ; 145(12): 124319, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27782680

RESUMEN

We present a joint experimental and theoretical study on the high-pressure behavior of bromine confined in the one-dimensional (1D) nanochannels of zeolite AlPO4-5 (AFI) single crystals. Raman scattering experiments indicate that loading bromine into AFI single crystals can lead to the formation of bromine molecular chains inside the nanochannels of the crystals. High-pressure Raman and X-ray diffraction studies demonstrate that high pressure can increase the length of the confined bromine molecular chains and modify the inter- and intramolecular interactions of the molecules. The confined bromine shows a considerably different high-pressure behavior to that of bulk bromine. The pressure-elongated bromine molecular chains can be preserved when the pressure is reduced to ambient pressure. Theoretical simulations explain the experimental results obtained from the Raman spectroscopy and X-ray diffraction studies. Furthermore, we find that the intermolecular distance between confined bromine molecules gradually becomes comparable to the intramolecular bond length in bromine molecules upon compression. This may result in the dissociation of the bromine molecules and the formation of 1D bromine atomic chains at pressures above 24 GPa. Our study suggests that the unique nanoconfinement has a considerable effect on the high-pressure behavior of bromine, and the confined bromine species concomitantly enhance the structural stability of the host AFI single crystals.

20.
Phys Chem Chem Phys ; 16(18): 8301-9, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24658134

RESUMEN

Iodine molecules confined in the elliptical nanochannels of AlPO4-11 crystals can only rotate in the plane passing through the major axis of the elliptical cross-section due to size confinement. This leads to different dynamic behaviors of iodine from those confined in round channels of AlPO4-5 crystals under ambient conditions. In this work, we use high pressure technology to manipulate the nanoscaled iodine species confined in the elliptical channels of AlPO4-11 crystals. In situ polarized Raman measurements and theoretical simulations have been carried out to study the topological geometry of the confined iodine species upon compression. It was found that the population of iodine chains could significantly increase at the expense of standing iodine molecules under pressure up to 6 GPa, due to the pressure-induced rotation of standing iodine molecules. Besides, the contraction of the host framework along the channel axis favors the formation of iodine chains and strengthens the interaction of neighbouring molecules in a chain, consequently leading to a frequency redshift of the corresponding Raman mode. The different transformation dynamics of the confined iodine in AlPO4-11 crystals upon compression, compared to those in round channels of AlPO4-5 crystals, have been discussed in terms of the unique nanochannels that offer the quasi two-dimensional nanoscaled confinement environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA