Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(13): 1142-1151, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38557732

RESUMEN

Lowe syndrome, a rare X-linked multisystem disorder presenting with major abnormalities in the eyes, kidneys, and central nervous system, is caused by mutations in OCRL gene (NG_008638.1). Encoding an inositol polyphosphate 5-phosphatase, OCRL catalyzes the hydrolysis of PI(4,5)P2 into PI4P. There are no effective targeted treatments for Lowe syndrome. Here, we demonstrate a novel gene therapy for Lowe syndrome in patient fibroblasts using an adenine base editor (ABE) that can efficiently correct pathogenic point mutations. We show that ABE8e-NG-based correction of a disease-causing mutation in a Lowe patient-derived fibroblast line containing R844X mutation in OCRL gene, restores OCRL expression at mRNA and protein levels. It also restores cellular abnormalities that are hallmarks of OCRL dysfunction, including defects in ciliogenesis, microtubule anchoring, α-actinin distribution, and F-actin network. The study indicates that ABE-mediated gene therapy is a feasible treatment for Lowe syndrome, laying the foundation for therapeutic application of ABE in the currently incurable disease.


Asunto(s)
Fibroblastos , Edición Génica , Terapia Genética , Síndrome Oculocerebrorrenal , Monoéster Fosfórico Hidrolasas , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Humanos , Fibroblastos/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Terapia Genética/métodos , Edición Génica/métodos , Mutación , Adenina/metabolismo
2.
Am J Physiol Cell Physiol ; 326(6): C1611-C1624, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646789

RESUMEN

The influence of SGLT-1 on perivascular preadipocytes (PVPACs) and vascular remodeling is not well understood. This study aimed to elucidate the role and mechanism of SGLT-1-mediated PVPACs bioactivity. PVPACs were cultured in vitro and applied ex vivo to the carotid arteries of mice using a lentivirus-based thermosensitive in situ gel (TISG). The groups were treated with Lv-SGLT1 (lentiviral vector, overexpression), Lv-siSGLT1 (RNA interference, knockdown), or specific signaling pathway inhibitors. Assays were conducted to assess changes in cell proliferation, apoptosis, glucose uptake, adipogenic differentiation, and vascular remodeling in the PVPACs. Protein expression was analyzed by Western blotting, immunocytochemistry, and/or immunohistochemistry. The methyl thiazolyl tetrazolium (MTT) assay and Hoechst 33342 staining indicated that SGLT-1 overexpression significantly promoted PVPACs proliferation and inhibited apoptosis in vitro. Conversely, SGLT-1 knockdown exerted the opposite effect. Oil Red O staining revealed that SGLT-1 overexpression facilitated adipogenic differentiation, while its inhibition mitigated these effects. 3H-labeled glucose uptake experiments demonstrated that SGLT-1 overexpression enhanced glucose uptake by PVPACs, whereas RNA interference-mediated SGLT-1 inhibition had no significant effect on glucose uptake. Moreover, RT-qPCR, Western blotting, and immunofluorescence analyses revealed that SGLT-1 overexpression upregulated FABP4 and VEGF-A levels and activated the Akt/mTOR/p70S6K signaling pathway, whereas SGLT-1 knockdown produced the opposite effects. In vivo studies corroborated these findings and indicated that SGLT-1 overexpression facilitated carotid artery remodeling. Our study demonstrates that SGLT-1 activation of the Akt/mTOR/p70S6K signaling pathway promotes PVPACs proliferation, adipogenesis, glucose uptake, glucolipid metabolism, and vascular remodeling.NEW & NOTEWORTHY SGLT-1 is expressed in PVPACs and can affect preadipocyte glucolipid metabolism and vascular remodeling. SGLT-1 promotes the biofunctions of PVPACs mediated by Akt/mTOR/p70S6K signaling pathway. Compared with caudal vein or intraperitoneal injection, the external application of lentivirus-based thermal gel around the carotid artery is an innovative attempt at vascular remodeling model, it may effectively avoid the transfection of lentiviral vector into the whole body of mice and the adverse effect on experimental results.


Asunto(s)
Adipocitos , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt , Proteínas Quinasas S6 Ribosómicas 70-kDa , Transducción de Señal , Transportador 1 de Sodio-Glucosa , Serina-Treonina Quinasas TOR , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Ratones , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Adipocitos/metabolismo , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Masculino , Adipogénesis/fisiología , Ratones Endogámicos C57BL , Remodelación Vascular , Células Cultivadas , Apoptosis , Diferenciación Celular , Glucosa/metabolismo , Glucosa/deficiencia
3.
Biol Reprod ; 111(1): 123-134, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38660750

RESUMEN

In oviparous animals, egg yolk is largely derived from vitellogenin, which is taken up from the maternal circulation by the growing oocytes via the vitellogenin receptor. Recently, a novel member of the lipoprotein receptor superfamily termed low-density lipoprotein receptor-related protein 13 was identified and proposed as a candidate of vitellogenin receptor in oviparous animals. However, the roles of low-density lipoprotein receptor-related protein 13 in vitellogenesis are still poorly defined. Here, we investigated the expression, vitellogenin-binding properties, and function of low-density lipoprotein receptor-related protein 13 in zebrafish. Two different lrp13 genes termed lrp13a and lrp13b were found in zebrafish. Reverse transcription polymerase chain reaction and quantitative polymerase chain reaction revealed both lrp13s to be predominantly expressed in zebrafish ovary, and in situ hybridization detected both lrp13s transcripts in the ooplasm of early stage oocytes. Two yeast hybrid studies showed that among eight vitellogenins of zebrafish, Vtg1, 2, and 3 bind to Lrp13a, while Vtg1, 2, and 5 bind to Lrp13b. We created zebrafish lrp13a and lrp13b mutant lines using CRISPR/Cas9. Knockout of lrp13a leads to a male-biased sex ratio and decreased diameter of embryo yolk, while knockout of lrp13b and double knockout of lrp13a and lrp13b leads to the delay of vitellogenesis, followed by follicular atresia. These phenotypes of mutants can be explained by the disruption of vitellogenesis in the absence of Lrp13s. Taken together, our results indicate that both Lrp13a and Lrp13b can serve as vitellogenin receptors in zebrafish among other vitellogenin receptors that are not yet described.


Asunto(s)
Proteínas del Huevo , Ovario , Vitelogeninas , Proteínas de Pez Cebra , Pez Cebra , Animales , Femenino , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Ovario/metabolismo , Vitelogeninas/metabolismo , Vitelogeninas/genética , Proteínas del Huevo/metabolismo , Proteínas del Huevo/genética , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética
4.
Scand J Gastroenterol ; 59(4): 445-455, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38053282

RESUMEN

BACKGROUND: Accompanied by the growing prevalence of nonalcoholic fatty liver disease (NAFLD), the coexistence of chronic hepatitis B (CHB) and NAFLD has increased. In the context of CHB, there is limited understanding of the factors that influence the development of NASH. METHODS: We enrolled CHB combined NAFLD patients who had liver biopsy and divided them to NASH vs. non-NASH groups. A whole transcriptome chip was used to examine the expression profiles of long noncoding RNAs (lncRNAs) and mRNA in biopsied liver tissues. The function analysis of HIGD1A were performed. We knocked down or overexpressed HIGD1A in HepG2.2.15 cells by transient transfection of siRNA-HIGD1A or pcDNA-HIGD1A. In vivo investigations were conducted using hepatitis B virus (HBV) transgenic mice. RESULTS: In 65 patients with CHB and NAFLD, 28 were patients with NASH, and 37 were those without NASH. After screening 582 differentially expressed mRNAs, GO analysis revealed differentially expressed mRNAs acting on nicotinamide adenine dinucleotide phosphate (NADPH), which influenced redox enzyme activity. KEGG analysis also shown that they were involved in the NAFLD signaling pathway. The function analysis revealed that HIGD1A was associated with the mitochondrion. Then, both in vivo and in vitro CHB model, HIGD1A was significantly higher in the NASH group than in the non-NASH group. HIGD1A knockdown impaired mitochondrial transmembrane potential and induced cell apoptosis in HepG2.2.15 cells added oleic acid and palmitate. On the contrary, hepatic HIGD1A overexpression ameliorated free fatty acids-induced apoptosis and oxidative stress. Furthermore, HIGD1A reduced reactive oxygen species (ROS) level by increasing glutathione (GSH) expression, but Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/Acetyl-CoA carboxylase (ACC) pathway was not involved. CONCLUSION: Both in vivo and in vitro CHB model, an upward trend of HIGD1A was observed in the NASH-related inflammatory response. HIGDIA played a protective role in cells against oxidative stress. Our data suggested that HIGD1A may be a positive regulator of NASH within the CHB context.


Asunto(s)
Hepatitis B Crónica , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Hepatitis B Crónica/complicaciones , Hígado/patología , Virus de la Hepatitis B/genética , Especies Reactivas de Oxígeno/metabolismo
5.
Environ Sci Technol ; 58(22): 9559-9569, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38710655

RESUMEN

Harmful cyanobacterial blooms are frequent and intense worldwide, creating hazards for aquatic biodiversity. The potential estrogen-like effect of Microcystin-LR (MC-LR) is a growing concern. In this study, we assessed the estrogenic potency of MC-LR in black-spotted frogs through combined field and laboratory approaches. In 13 bloom areas of Zhejiang province, China, the MC-LR concentrations in water ranged from 0.87 to 8.77 µg/L and were correlated with sex hormone profiles in frogs, suggesting possible estrogenic activity of MC-LR. Tadpoles exposed to 1 µg/L, an environmentally relevant concentration, displayed a female-biased sex ratio relative to controls. Transcriptomic results revealed that MC-LR induces numerous and complex effects on gene expression across multiple endocrine axes. In addition, exposure of male adults significantly increased the estradiol (E2)/testosterone (T) ratio by 3.5-fold relative to controls. Downregulation of genes related to male reproductive endocrine function was also identified. We also showed how MC-LR enhances the expression of specific estrogen receptor (ER) proteins, which induce estrogenic effects by activating the ER pathway and hypothalamic-pituitary-gonadal (HPG) axis. In aggregate, our results reveal multiple lines of evidence demonstrating that, for amphibians, MC-LR is an estrogenic endocrine disruptor at environmentally relevant concentrations. The data presented here support the need for a shift in the MC-LR risk assessment. While hepatoxicity has historically been the focus of MC-LR risk assessments, our data clearly demonstrate that estrogenicity is a major mode of toxicity at environmental levels and that estrogenic effects should be considered for risk assessments on MC-LR going forward.


Asunto(s)
Estrógenos , Animales , Masculino , Femenino , Microcistinas/toxicidad , Ranidae/genética , Ranidae/metabolismo , Toxinas Marinas , Contaminantes Químicos del Agua/toxicidad
6.
Environ Res ; 249: 118337, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325783

RESUMEN

Microorganisms are integral to freshwater ecological functions and, reciprocally, their activity and diversity are shaped by the ecosystem state. Yet, the diversity of bacterial community and its driving factors at a large scale remain elusive. To bridge this knowledge gap, we delved into an analysis of 16S RNA gene sequences extracted from 929 water samples across China. Our analyses revealed that inland water bacterial communities showed a weak latitudinal diversity gradient. We found 530 bacterial genera with high relative abundance of hgcI clade. Among them, 29 core bacterial genera were identified, that is strongly linked to mean annual temperature and nutrient loadings. We also detected a non-linear response of bacterial network complexity to the increasing of human pressure. Mantel analysis suggested that MAT, HPI and P loading were the major factors driving bacterial communities in inland waters. The map of taxa abundance showed that the abundant CL500-29 marine group in eastern and southern China indicated high eutrophication risk. Our findings enhance our understanding of the diversity and large-scale biogeographic pattern of bacterial communities of inland waters and have important implications for microbial ecology.


Asunto(s)
Bacterias , ARN Ribosómico 16S , China , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Biodiversidad , Microbiología del Agua , Agua Dulce/microbiología
7.
BMC Biol ; 21(1): 155, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434184

RESUMEN

BACKGROUND: Adenine base editors (ABEs) are promising therapeutic gene editing tools that can efficiently convert targeted A•T to G•C base pairs in the genome. However, the large size of commonly used ABEs based on SpCas9 hinders its delivery in vivo using certain vectors such as adeno-associated virus (AAV) during preclinical applications. Despite a number of approaches having previously been attempted to overcome that challenge, including split Cas9-derived and numerous domain-deleted versions of editors, whether base editor (BE) and prime editor (PE) systems can also allow deletion of those domains remains to be proven. In this study, we present a new small ABE (sABE) with significantly reduced size. RESULTS: We discovered that ABE8e can tolerate large single deletions in the REC2 (Δ174-296) and HNH (Δ786-855) domains of SpCas9, and these deletions can be stacked together to create a new sABE. The sABE showed higher precision than the original ABE8e, with proximally shifted protospacer adjacent motif (PAM) editing windows (A3- A15), and comparable editing efficiencies to 8e-SaCas9-KKH. The sABE system efficiently generated A-G mutations at disease-relevant loci (T1214C in GAA and A494G in MFN2) in HEK293T cells and several canonical Pcsk9 splice sites in N2a cells. Moreover, the sABE enabled in vivo delivery in a single adeno-associated virus (AAV) vector with slight efficiency. Furthermore, we also successfully edited the genome of mouse embryos by microinjecting mRNA and sgRNA of sABE system into zygotes. CONCLUSIONS: We have developed a substantially smaller sABE system that expands the targeting scope and offers higher precision of genome editing. Our findings suggest that the sABE system holds great therapeutic potential in preclinical applications.


Asunto(s)
Edición Génica , Proproteína Convertasa 9 , ARN Guía de Sistemas CRISPR-Cas , Animales , Humanos , Ratones , Adenina , Células HEK293
8.
Water Sci Technol ; 89(10): 2839-2850, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38822618

RESUMEN

Antibiotics release into the water environment through sewage discharge is a significant environmental concern. In the present study, we investigated the removal of ciprofloxacin (CIP) in simulated sewage by biological aeration filter (BAF) equipped with Fe3O4-modified zeolite (Fe3O4@ZF). Fe3O4@ZF were prepared with impregnation method, and the Fe3O4 particles were successfully deposited on the surface of ZF in an amorphous form according to the results of XPS and XRD analysis. The modification also increased the specific surface area (from 16.22 m²/g to 22 m²/g) and pore volume (from 0.0047 cm³/g to 0.0063 cm³/g), improving the adsorption efficiency of antibiotics. Fe3O4 modified ZF improved the treatment performance significantly, and the removal efficiency of CIP in BAF-Fe3O4@ZF was 79%±2.4%. At 10ml/L CIP, the BAF-Fe3O4@ZF reduced the relative abundances of antibiotics resistance genes (ARGs) int, mexA, qnrB and qnrS in the effluent by 57.16%, 39.59%, 60.22%, and 20.25%, respectively, which effectively mitigate the dissemination risk of ARGs. The modification of ZF increased CIP-degrading bacteria abundance, such as Rhizobium and Deinococcus-Thermus, and doubled bacterial ATP activity, promoting CIP degradation. This study offers a viable, efficient method to enhance antibiotic treatment and prevent leakage via sewage discharge.


Asunto(s)
Antibacterianos , Ciprofloxacina , Aguas Residuales , Contaminantes Químicos del Agua , Zeolitas , Zeolitas/química , Ciprofloxacina/farmacología , Ciprofloxacina/química , Aguas Residuales/química , Antibacterianos/farmacología , Antibacterianos/química , Filtración/métodos , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Adsorción , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Farmacorresistencia Bacteriana/genética
9.
Plant Mol Biol ; 112(6): 309-323, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37378835

RESUMEN

Aerial root mucilage can enhance nitrogen fixation by providing sugar and low oxygen environment to the rhizosphere microbiome in Sierra Mixe maize. Aerial root mucilage has long been documented in sorghum (Sorghum bicolor), but little is known about the biological significance, genotypic variation, and genetic regulation of this biological process. In the present study, we found that a large variation of mucilage secretion capacity existed in a sorghum panel consisting of 146 accessions. Mucilage secretion occurred primarily in young aerial roots under adequately humid conditions but decreased or stopped in mature long aerial roots or under dry conditions. The main components of the mucilage-soluble were glucose and fructose, as revealed by sugar profiling of cultivated and wild sorghum. The mucilage secretion capacity of landrace grain sorghum was significantly higher than that of wild sorghum. Transcriptome analysis revealed that 1844 genes were upregulated and 2617 genes were downregulated in mucilage secreting roots. Amongst these 4461 differentially expressed genes, 82 genes belonged to glycosyltransferases and glucuronidation pathways. Sobic.010G120200, encoding a UDP-glycosyltransferase, was identified by both GWAS and transcriptome analysis as a candidate gene, which may be involved in the regulation of mucilage secretion in sorghum through a negative regulatory mechanism.


Asunto(s)
Sorghum , Sorghum/genética , Sorghum/metabolismo , Transcriptoma , Azúcares/metabolismo , Estudio de Asociación del Genoma Completo , Polisacáridos/metabolismo , Perfilación de la Expresión Génica , Grano Comestible/genética , Variación Genética
10.
J Cardiovasc Pharmacol ; 82(2): 128-137, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37155368

RESUMEN

ABSTRACT: Six-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) is a key regulator of glycolytic enzyme. This study identified whether PFKFB2 can regulate myocardial ferroptosis in ischemia/reperfusion (I/R) injury. Mice myocardial (I/R) injury and H9c2 cells oxygen-glucose deprivation/reperfusion (OGD/R) models were established. PFKFB2 expression was enhanced in I/R mice and OGD/R H9c2 cells. Overexpression of PFKFB2 improves heart function in I/R mice. Overexpression of PFKFB2 inhibits I/R and OGD/R-induced ferroptosis in mice and H9c2 cells. Mechanistically, overexpression of PFKFB2 activates the adenosine monophosphate-activated protein kinase (AMPK). AMPK inhibitor compound C reverses effect of PFKFB2 overexpression in reducing ferroptosis under OGD/R treatment. In conclusion, PFKFB2 protects hearts against I/R-induced ferroptosis through activation of the AMPK signaling pathway.


Asunto(s)
Ferroptosis , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratones , Animales , Daño por Reperfusión Miocárdica/metabolismo , Adenosina Monofosfato/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal , Daño por Reperfusión/metabolismo , Apoptosis , Glucosa/metabolismo
11.
Mol Ther ; 30(1): 256-267, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34174445

RESUMEN

Compact CRISPR-Cas9 systems that can be packaged into an adeno-associated virus (AAV) show promise for gene therapy. However, the requirement of protospacer adjacent motifs (PAMs) restricts the target scope. To expand this repertoire, we revisited and optimized a small Cas9 ortholog derived from Streptococcus pasteurianus (SpaCas9) for efficient genome editing in vivo. We found that SpaCas9 enables potent targeting of 5'-NNGYRA-3' PAMs, which are distinct from those recognized by currently used small Cas9s; the Spa-cytosine base editor (CBE) and Spa-adenine base editor (ABE) systems efficiently generated robust C-to-T and A-to-G conversions both in vitro and in vivo. In addition, by exploiting natural variation in the PAM-interacting domain, we engineered three SpaCas9 variants to further expand the targeting scope of compact Cas9 systems. Moreover, mutant mice with efficient disruption of the Tyr gene were successfully generated by microinjection of SpaCas9 mRNA and the corresponding single guide RNA (sgRNA) into zygotes. Notably, all-in-one AAV delivery of SpaCas9 targeting the Pcsk9 gene in adult mouse liver produced efficient genome-editing events and reduced its serum cholesterol. Thus, with distinct PAMs and a small size, SpaCas9 will broaden the CRISPR-Cas9 toolsets for efficient gene modifications and therapeutic applications.


Asunto(s)
Edición Génica , Proproteína Convertasa 9 , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Ratones , Proproteína Convertasa 9/genética , ARN Guía de Kinetoplastida/genética , Streptococcus
12.
Plant Cell Environ ; 45(12): 3399-3411, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36175003

RESUMEN

Humidity is a critical environmental factor affecting the epidemic of plant diseases. However, it is still unclear how ambient humidity affects the occurrence of diseases in plants. In this study, we show that high ambient humidity enhanced blast development in rice plants under laboratory conditions. Furthermore, we found that high ambient humidity enhanced the virulence of Magnaporthe oryzae by promoting conidial germination and appressorium formation. In addition, the results of RNA-sequencing analysis and the ethylene content assessment revealed that high ambient humidity suppressed the accumulation of ethylene and the activation of ethylene signaling pathway induced by M. oryzae in rice. Knock out of ethylene signaling genes OsEIL1 and OsEIN2 or exogenous application of 1-methylcyclopropene (ethylene inhibitor) and ethephon (ethylene analogues) eliminated the difference of blast resistance between the 70% and 90% relative humidity conditions, suggesting that the activation of ethylene signaling contributes to humidity-modulated basal resistance against M. oryzae in rice. In conclusion, our results demonstrated that high ambient humidity enhances the virulence of M. oryzae and compromises basal resistance by reducing the activation of ethylene biosynthesis and signaling in rice. Results from this study provide cues for novel strategies to control rice blast under global environmental changes.


Asunto(s)
Magnaporthe , Oryza , Magnaporthe/genética , Oryza/genética , Virulencia , Humedad , Enfermedades de las Plantas/genética , Etilenos/metabolismo , Resistencia a la Enfermedad/genética
13.
Cell Commun Signal ; 20(1): 188, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434608

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is a highly lethal malignancy regarding digestive system, which is the fourth leading factor of cancer-related mortalities in the globe. Prognosis is poor due to diagnosis at advanced disease stage, low rates of surgical resection, and resistance to traditional radiotherapy and chemotherapy. In order to develop novel therapeutic strategies, further elucidation of the molecular mechanisms underlying PC chemoresistance is required. Ribosomal RNA biogenesis has been implicated in tumorigenesis. Small nucleolar RNAs (snoRNAs) is responsible for post-transcriptional modifications of ribosomal RNAs during biogenesis, which have been identified as potential markers of various cancers. Here, we investigate the U3 snoRNA-associated protein RRP9/U3-55 K along with its role in the development of PC and gemcitabine resistance. METHODS: qRT-PCR, western blot and immunohistochemical staining assays were employed to detect RRP9 expression in human PC tissue samples and cell lines. RRP9-overexpression and siRNA-RRP9 plasmids were constructed to test the effects of RRP9 overexpression and knockdown on cell viability investigated by MTT assay, colony formation, and apoptosis measured by FACS and western blot assays. Immunoprecipitation and immunofluorescence staining were utilized to demonstrate a relationship between RRP9 and IGF2BP1. A subcutaneous xenograft tumor model was elucidated in BALB/c nude mice to examine the RRP9 role in PC in vivo. RESULTS: Significantly elevated RRP9 expression was observed in PC tissues than normal tissues, which was negatively correlated with patient prognosis. We found that RRP9 promoted gemcitabine resistance in PC in vivo and in vitro. Mechanistically, RRP9 activated AKT signaling pathway through interacting with DNA binding region of IGF2BP1 in PC cells, thereby promoting PC progression, and inducing gemcitabine resistance through a reduction in DNA damage and inhibition of apoptosis. Treatment with a combination of the AKT inhibitor MK-2206 and gemcitabine significantly inhibited tumor proliferation induced by overexpression of RRP9 in vitro and in vivo. CONCLUSIONS: Our data reveal that RRP9 has a critical function to induce gemcitabine chemoresistance in PC through the IGF2BP1/AKT signaling pathway activation, which might be a candidate to sensitize PC cells to gemcitabine. Video abstract.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Neoplasias Pancreáticas/patología , Transducción de Señal , Gemcitabina , Neoplasias Pancreáticas
14.
Nanotechnology ; 34(1)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36191523

RESUMEN

Nanotwinned copper is a potential microelectronic interconnection material due to its superior strength and conductivity, however, its filling ability is urgently needed to improve before its application in the field of advanced packaging. The effect of additive (sodium thiazolinyl dithiopropane sulphonate, SH110) addition on the surface roughness, microstructure, mechanical properties and filling capacity of nanotwinned copper films was investigated. The surface roughness and grain size were firstly reduced then increased with the increasing concentrations of SH110, reaching the minimum value at 10 ppm. It was noticed that copper films with 10 ppm SH110 also possessed superior tensile strength and elongation, which were measured as 481 MPa and 3.68% on average of 12µm thick samples by dynamic thermo-mechanical analyzer. Further, their uniformity and flatness of redistributed layers (RDLs) were controlled as 2% and 1.9%, which were significantly improved compared to the samples without SH110 (7.6% and 4.7%). As demonstrated by linear sweep voltammetry analysis and galvanostatic measurement, the SH110 could cooperate well with gelatin and serve as a combination of accelerator and leveler, resulting in the improvement of filling capacity for nanotwinned copper RDLs.

15.
Environ Sci Technol ; 56(18): 13222-13232, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36044002

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental pollutants, causing environmental threats and public health concerns, but information regarding PFAS hepatotoxicity remains elusive. We investigated the effects of PFASs on lipid metabolism in black-spotted frogs through a combined field and laboratory study. In a fluorochemical industrial area, PFASs seriously accumulate in frog tissues. PFAS levels in frog liver tissues are positively related to the hepatosomatic index along with triglyceride (TG) and cholesterol (TC) contents. In the laboratory, frogs were exposed to 1 and 10 µg/L PFASs, respectively (including PFOA, PFOS, and 6:2 Cl-PFESA). At 10 µg/L, PFASs change the hepatic fatty acid composition and significantly increase the hepatic TG content by 1.33 to 1.87 times. PFASs induce cross-talk accumulation of TG, TC, and their metabolites between the liver and serum. PFASs can bind to LXRα and PPARα proteins, further upregulate downstream lipogenesis-related gene expression, and downregulate lipolysis-related gene expression. Furthermore, lipid accumulation induced by PFASs is alleviated by PPARα and LXRα antagonists, suggesting the vital role of PPARα and LXRα in PFAS-induced lipid metabolism disorders. This work first reveals the disruption of PFASs on hepatic lipid homeostasis and provides novel insights into the occurrence and environmental risk of PFASs in amphibians.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Ácidos Alcanesulfónicos/toxicidad , Animales , Anuros/metabolismo , China , Contaminantes Ambientales/metabolismo , Ácidos Grasos , Fluorocarburos/análisis , Fluorocarburos/toxicidad , Metabolismo de los Lípidos , PPAR alfa/metabolismo , Ranidae/metabolismo , Triglicéridos
16.
Environ Sci Technol ; 56(4): 2519-2528, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35075897

RESUMEN

3,3',5,5'-Tetrabromobiphenyl (BB-80) was once used as additive flame retardants. Whether its early exposure and discontinued exposure alter thyroid function remains unknown. We investigate adverse effects after early-life exposure and discontinued exposure to BB-80 and hydroxylated BB-80 (OH-BB-80) on thyroid hormone (TH) levels, thyroid tissue, and transcriptome profiles in zebrafish larvae. BB-80 at 10 µg/L induces pathological changes of thyroid with reduced thyroid follicles in larvae (P < 0.05), whereas OH-BB-80 significantly increases T4 and T3 contents (1.8 and 2.5 times of the control, P < 0.05) at 14 days postfertilization (dpf) without morphological thyroid alterations. BB-80 and OH-BB-80 cause transcriptome aberrations with key differentially expressed genes involved in the disruption of TH synthesis and signal transduction (BB-80 at 14 dpf) or TH pathway activation (OH-BB-80 at 21 dpf). After 7 days of discontinued exposure, thyroglobulin (tg) and thyroid peroxidase (tpo) genes are downregulated (P < 0.05) by 52 and 48% for BB-80 and by 49 and 39% for OH-BB-80, respectively; however, the whole-body TH levels fail to fully recover, and the locomotor activity is impaired more by BB-80. Our results indicate significant adverse impacts of BB-80 and OH-BB-80 on TH homeostasis and thyroid function of zebrafish.


Asunto(s)
Retardadores de Llama , Contaminantes Químicos del Agua , Animales , Retardadores de Llama/metabolismo , Retardadores de Llama/toxicidad , Larva/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
17.
Biol Reprod ; 104(6): 1194-1204, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33693502

RESUMEN

As in other vertebrates, fish reproduction is tightly controlled by gonadotropin signaling. One of the most perplexing aspects of gonadotropin action on germ cell biology is the restricted expression of gonadotropin receptors in somatic cells of the gonads. Therefore, the identification of factors conveying the action of gonadotropins on germ cells is particularly important for understanding the mechanism of reproduction. Insulin-like growth factors (Igfs) are recognized as key factors in regulating reproduction by triggering a series of physiological processes in vertebrates. Recently, a novel member of Igfs called Igf3 has been identified in teleost. Different from the conventional Igf1 and Igf2 that are ubiquitously expressed in a majority of tissues, Igf3 is solely or highly expressed in the fish gonads. The role of Igf3 in mediating the action of gonadotropin through Igf type 1 receptor on several aspects of oogenesis and spermatogenesis have been demonstrated in several fish species. In this review, we will summarize existing data on Igf3. This new information obtained from Igf3 provides insight into elucidating the molecular mechanism of fish reproduction, and also highlights the importance of Igf system in mediating the action of gonadotropin signaling on animal reproduction.


Asunto(s)
Gónadas , Reproducción , Animales , Peces , Masculino , Oogénesis , Espermatogénesis
18.
Plant Cell ; 30(10): 2286-2307, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30309900

RESUMEN

Sorghum (Sorghum bicolor) is the fifth most popular crop worldwide and a C4 model plant. Domesticated sorghum comes in many forms, including sweet cultivars with juicy stems and grain sorghum with dry, pithy stems at maturity. The Dry locus, which controls the pithy/juicy stem trait, was discovered over a century ago. Here, we found that Dry gene encodes a plant-specific NAC transcription factor. Dry was either deleted or acquired loss-of-function mutations in sweet sorghum, resulting in cell collapse and altered secondary cell wall composition in the stem. Twenty-three Dry ancestral haplotypes, all with dry, pithy stems, were found among wild sorghum and wild sorghum relatives. Two of the haplotypes were detected in domesticated landraces, with four additional dry haplotypes with juicy stems detected in improved lines. These results imply that selection for Dry gene mutations was a major step leading to the origin of sweet sorghum. The Dry gene is conserved in major cereals; fine-tuning its regulatory network could provide a molecular tool to control crop stem texture.


Asunto(s)
Variación Genética , Proteínas de Plantas/genética , Sorghum/genética , Factores de Transcripción/genética , Pared Celular/genética , Pared Celular/metabolismo , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Haplotipos , Proteínas de Plantas/metabolismo , Tallos de la Planta/fisiología , Selección Genética , Sorghum/fisiología
19.
FASEB J ; 34(1): 588-596, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914687

RESUMEN

Base editors, composed of a cytidine deaminase or an evolved adenine deaminase fused to Cas9 nickase, enable efficient C-to-T or A-to-G conversion in various organisms. However, the NGG protospacer adjacent motif (PAM) requirement of Streptococcus pyogenes Cas9 (SpCas9) substantially limits the target sites suitable for base editing. Quite recently, a new engineered SpCas9-NG variant, which can recognize minimal NG PAMs more efficiently than the present xCas9 variant. Here, we investigated the efficiency and PAM compatibility of SpCas9-NG-assisted cytidine base editors (CBEs) and adenine base editors (ABEs) in rabbits. In this study, we showed that NG-BE4max and NG-ABEmax systems can achieve a targeted mutation efficiency of 75%-100% and 80%-100% with excellent PAM compatibility of NGN PAMs in rabbit embryos, respectively. In addition, both base editors were successfully applied to create new rabbit models with precise point mutations, demonstrating their high efficiency and expanded genome-targeting scope in rabbits. Meanwhile, NG-ABEmax can be used to precisely mimic human Hoxc13 p.Q271R missense mutation in Founder (F0) rabbits, which is arduous for conventional ABEs to achieve due to a NGA PAM requirement. Collectively, NG-BE4max and NG-ABEmax systems provide promising tools to perform efficient base editing with expanded targeting scope in rabbits and enhances its capacity to model human diseases.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Embrión de Mamíferos/metabolismo , Edición Génica/métodos , Mutación , Motivos de Nucleótidos/genética , Adenina/química , Animales , Citosina/química , Embrión de Mamíferos/citología , Factor 5 de Crecimiento de Fibroblastos/genética , Proteínas de Homeodominio/genética , Modelos Animales , Conejos , Streptococcus pyogenes/genética
20.
Theor Appl Genet ; 134(7): 1899-1924, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33655424

RESUMEN

KEY MESSAGE: The importance and potential of the multi-purpose crop sorghum in global food security have not yet been fully exploited, and the integration of the state-of-art genomics and high-throughput technologies into breeding practice is required. Sorghum, a historically vital staple food source and currently the fifth most important major cereal, is emerging as a crop with diverse end-uses as food, feed, fuel and forage and a model for functional genetics and genomics of tropical grasses. Rapid development in high-throughput experimental and data processing technologies has significantly speeded up sorghum genomic researches in the past few years. The genomes of three sorghum lines are available, thousands of genetic stocks accessible and various genetic populations, including NAM, MAGIC, and mutagenised populations released. Functional and comparative genomics have elucidated key genetic loci and genes controlling agronomical and adaptive traits. However, the knowledge gained has far away from being translated into real breeding practices. We argue that the way forward is to take a genome-based approach for tailored designing of sorghum as a multi-functional crop combining excellent agricultural traits for various end uses. In this review, we update the new concepts and innovation systems in crop breeding and summarise recent advances in sorghum genomic researches, especially the genome-wide dissection of variations in genes and alleles for agronomically important traits. Future directions and opportunities for sorghum breeding are highlighted to stimulate discussion amongst sorghum academic and industrial communities.


Asunto(s)
Fitomejoramiento , Sorghum/genética , Agricultura , Alelos , Grano Comestible/genética , Genética de Población , Genómica , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA