Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(37): 86556-86597, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37421534

RESUMEN

With the global emphasis on environmental protection and the proposal of the climate goal of "carbon neutrality," countries around the world are calling for reductions in carbon dioxide, nitrogen oxide, and particulate matter pollution. These pollutants have severe impacts on human lives and should be effectively controlled. Engine exhaust is the most serious pollution source, and diesel engine is an important contributor to particulate matter. Diesel particulate filter (DPF) technology has proven to be an effective technology for soot control at the present and in the future. Firstly, the exacerbating effect of particulate matter on human infectious disease viruses is discussed. Then, the latest developments in the influence of key factors on DPF performance are reviewed at different observation scales (wall, channel, and entire filter). In addition, current soot catalytic oxidant schemes are presented in the review, and the significance of catalyst activity and soot oxidation kinetic models are highlighted. Finally, the areas that need further research are determined, which has important guiding significance for future research. Current catalytic technologies are focused on stable materials with high mobility of oxidizing substances and low cost. The challenge of DPF optimization design is to accurately calculate the balance between soot and ash load, DPF regeneration control strategy, and exhaust heat management strategy.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Hollín/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Contaminación del Aire/prevención & control , Polvo
2.
Environ Sci Pollut Res Int ; 30(16): 45607-45642, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36820972

RESUMEN

As countries around the world pay more attention to environmental protection, the corresponding emission regulations have become more stringent. Exhaust pollutants cause great harm to the environment and people, and diesel engines are one of the most important sources of pollution. Diesel particulate filter (DPF) technology has proven to be the most effective way to control and treat soot. In this paper, we review the latest research progress on DPF regeneration and ash. Passive regeneration, active regeneration, non-thermal plasma-assisted DPF regeneration and regeneration mechanism, DPF regeneration control assisted by engine management, and uncontrolled DPF regeneration and its control strategy are mainly introduced. In addition, the source, composition, and deposition of ash are described in detail, as well as the effect of ash on the DPF pressure drop and catalytic performance. Finally, the issues that need to be further addressed in DPF regeneration research are presented, along with challenges and future work in ash research. Over all, composite regeneration is still the mainstream regeneration method. The formation of ash is complex and there are still many unanswered questions that require further in-depth research.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Material Particulado/análisis , Polvo , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Contaminación del Aire/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA