RESUMEN
Ultrasound-microwave combined extraction (UMCE), gradient ethanol precipitation, chemical characterization, and antioxidant and hypoglycemic activities of Lycium barbarum leaf polysaccharides (LLP) were systematically studied. The optimal conditions for UMCE of LLP achieved by response surface method (RSM) were as follows: microwave time of 16 min, ultrasonic time of 20 min, particle size of 100 mesh, and ratio of liquid to solid of 55:1. Three novel polysaccharide fractions (LLP30, LLP50, LLP70) with different molecular weights were obtained by gradient ethanol precipitation. Polysaccharide samples exhibited scavenging capacities against ABTS and DPPH radicals and inhibitory activities against α-glucosidase and α-amylase. Among the three fractions, LLP30 possessed relatively high antioxidant and hypoglycemic activities in vitro, which showed a potential for becoming a nutraceutical or a phytopharmaceutical for prevention and treatment of hyperglycemia or diabetes.
Asunto(s)
Antioxidantes , Lycium , Antioxidantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/análisis , Lycium/química , Microondas , Polisacáridos/química , Hojas de la Planta/química , Etanol/análisisRESUMEN
Eleutherococcus senticosus is one of the Dao-di herbs in northeast China. In this study, the chloroplast genomes of three E. senticosus samples from different genuine producing areas were sequenced and then used for the screening of specific DNA barcodes. The germplasm resources and genetic diversity of E. senticosus were analyzed basing on the specific DNA barcodes. The chloroplast genomes of E. senticosus from different genuine producing areas showed the total length of 156 779-156 781 bp and a typical tetrad structure. Each of the chloroplast genomes carried 132 genes, including 87 protein-coding genes, 37 tRNAs, and 8 rRNAs. The chloroplast genomes were relatively conserved. Sequence analysis of the three chloroplast genomes indicated that atpI, ndhA, ycf1, atpB-rbcL, ndhF-rpl32, petA-psbJ, psbM-psbD, and rps16-psbK can be used as specific DNA barcodes of E. senticosus. In this study, we selected atpI and atpB-rbcL which were 700-800 bp and easy to be amplified for the identification of 184 E. senticosus samples from 13 genuine producing areas. The results demonstrated that 9 and 10 genotypes were identified based on atpI and atpB-rbcL sequences, respectively. Furthermore, the two barcodes identified 23 genotypes which were named H1-H23. The haplotype with the highest proportion and widest distribution was H10, followed by H2. The haplotype diversity and nucleotide diversity were 0.94 and 1.82×10~(-3), respectively, suggesting the high genetic diversity of E. senticosus. The results of the median-joining network analysis showed that the 23 genotypes could be classified into 4 categories. H2 was the oldest haplotype, and it served as the center of the network characterized by starlike radiation, which suggested that population expansion of E. senticosus occurred in the genuine producing areas. This study lays a foundation for the research on the genetic quality and chloroplast genetic engineering of E. senticosus and further research on the genetic mechanism of its population, providing new ideas for studying the genetic evolution of E. senticosus.
Asunto(s)
Código de Barras del ADN Taxonómico , Eleutherococcus , Eleutherococcus/genética , Secuencia de Bases , Cloroplastos/genética , Variación Genética , FilogeniaRESUMEN
OBJECTIVES: To study the clinical features of children with febrile seizures after Omicron variant infection. METHODS: A retrospective analysis was performed on the clinical data of children with febrile seizures after Omicron variant infection who were admitted to the Department of Neurology, Children's Hospital Affiliated to the Capital Institute of Pediatrics, from December 1 to 31, 2022 (during the epidemic of Omicron variant; Omicron group), and the children with febrile seizures (without Omicron variant infection) who were admitted from December 1 to 31, in 2021 were included as the non-Omicron group. Clinical features were compared between the two groups. RESULTS: There were 381 children in the Omicron group (250 boys and 131 girls), with a mean age of (3.2±2.4) years. There were 112 children in the non-Omicron group (72 boys and 40 girls), with a mean age of (3.5±1.8) years. The number of children in the Omicron group was 3.4 times that in the non-Omicron group. The proportion of children in two age groups, aged 1 to <2 years and 6-10.83 years, in the Omicron group was higher than that in the non-Omicron group, while the proportion of children in two age groups, aged 4 to <5 years and 5 to <6 years, was lower in the Omicron group than that in the non-Omicron group (P<0.05).The Omicron group had a significantly higher proportion of children with cluster seizures and status convulsion than the non-Omicron group (P<0.05). Among the children with recurrence of febrile seizures, the proportion of children aged 6-10.83 years in the Omicron group was higher than that in the non-Omicron group, while the proportion of children aged 3 years, 4 years, and 5 years in the Omicron group was lower than that in the non-Omicron group (P<0.05). CONCLUSIONS: Children with febrile seizures after Omicron variant infection tend to have a wider age range, with an increase in the proportion of children with cluster seizures and status convulsion during the course of fever.
Asunto(s)
Epidemias , Epilepsia Generalizada , Convulsiones Febriles , Masculino , Femenino , Humanos , Niño , Lactante , Preescolar , Convulsiones Febriles/etiología , Estudios Retrospectivos , Convulsiones , FiebreRESUMEN
Environmental cadmium (Cd) is positively associated with placental impairment and fetal growth retardation. Nevertheless, its potential mechanisms remain unclear. microRNAs (miRNAs) are known to influence placental development and fetal growth. This work was aimed to determine which miRNAs are involved in Cd-impaired placental and fetal development based on the mRNA and miRNA expression profiles analysis. As a result, gestational Cd exposure deceased fetal and placental weight, and reduced the protein level of PCNA in human and mouse placentae. Furthermore, the results of mRNA microarray showed that Cd-downregulated mRNAs were predictively correlated with several biological processes, including cell proliferation, differentiation and motility. In addition, the results of miRNA microarray and qPCR assay demonstrated that Cd significantly increased the level of miR-6769b-5p, miR-146b-5p and miR-452-5p. Integrated analysis of Cd-upregulated miRNAs predicted target genes and Cd-downregulated mRNAs found that overlapping mRNAs, such as CCND1, CDK13, RINT1 and CDC26 were also significantly associated with cell proliferation. Further experiments showed that miR-6769b-5p inhibitor, but not miR-146b-5p and miR-452-5p, markedly reversed Cd-downregulated the expression of proliferation-related mRNAs, and thereby restored Cd-decreased the proteins level of CCND1 and PCNA in human placental trophoblasts. Dual luciferase reporter assay further revealed that miR-6769b-5p directly targets CCND1. Finally, the case-control study demonstrated that increased miR-6769b-5p level and impaired cell proliferation were observed in small-for-gestational-age human placentae. In conclusion, miR-6769b-5p targets CCND-1 to regulate proliferation in Cd-treated placental trophoblasts, which is associated with the impairment of fetal growth. Our findings imply that placental miR-6769b-5p may be used as an epigenetic marker for environmental pollutants-caused fetal growth restriction and its late-onset chronic diseases.
RESUMEN
Appropriate light intensity is favorable for the photosynthesis, biomass accumulation, key enzyme activity, and secondary metabolite synthesis of medicinal plants. This study aims to explore the influence of light intensity on growth and quality of Panax quinquefolius. To be specific, sand culture experiment was carried out in a greenhouse under the light intensity of 40, 80, 120, and 160 µmol·m~(-2)·s~(-1), respectively. The growth indexes, photosynthetic characteristics, content of 6 ginsenosides of the 3-year-old P. quinquefolius were determined, and the expression of ginsenoside synthesis-related enzyme genes in leaves, main roots, and fibrous roots was determined. The results showed that the P. quinquefolius growing at 80 µmol·m~(-2)·s~(-1) light intensity had the most biomass and the highest net photosynthetic rate. The total biomass of P. quinquefolius treated with 120 µmol·m~(-2)·s~(-1) light intensity was slightly lower than that with 80 µmol·m~(-2)·s~(-1). The root-to-shoot ratio in the treatment with 120 µmol·m~(-2)·s~(-1) light intensity was up to 6.86, higher than those in other treatments(P<0.05),and the ginsenoside content in both aboveground and underground parts of P. quinquefolius in this treatment was the highest, which was possibly associated with the high expression of farnesylpyrophosphate synthase(FPS), squalene synthase(SQS), squalene epoxidase(SQE), oxidosqualene cyclase(OSC), dammarenediol-â ¡ synthase(DS), and P450 genes in leaves and SQE and DS genes in main roots. In addition, light intensities of 120 and 160 µmol·m~(-2)·s~(-1) could promote PPD-type ginsenoside synthesis in leaves by triggering up-regulation of the expression of upstream ginsenoside synthesis genes. The decrease in underground biomass accumulation of the P. quinquefolius grown under weak light(40 µmol·m~(-2)·s~(-1)) and strong light(160 µmol·m~(-2)·s~(-1)) was possibly attributed to the low net photosynthetic rate, stomatal conductance, and transpiration rate in leaves. In the meantime, the low expression of SQS, SQE, OSC, and DS genes in the main roots might led to the decrease in ginsenoside content. However, there was no significant correlation between the ginsenoside content and the expression of synthesis-related genes in the fibrous roots of P. quinquefolius. Therefore, the light intensity of 80 and 120 µmol·m~(-2)·s~(-1) is beneficial to improving yield and quality of P. quinquefolius. The above findings contributed to a theoretical basis for reasonable shading in P. quinquefolius cultivation, which is of great significance for improving the yield and quality of P. quinquefolius through light regulation.
Asunto(s)
Ginsenósidos , Panax , Farnesil Difosfato Farnesil Transferasa/metabolismo , Panax/metabolismo , Raíces de Plantas/metabolismo , Arena , Escualeno-MonooxigenasaRESUMEN
It has been reported that activation of NF-κB is involved in excitotoxicity; however, it is not fully understood how NF-κB contributes to excitotoxicity. The aim of this study is to investigate if NF-κB contributes to quinolinic acid (QA)-mediated excitotoxicity through activation of microglia. In the cultured primary cortical neurons and microglia BV-2 cells, the effects of QA on cell survival, NF-κB expression and cytokines production were investigated. The effects of BV-2-conditioned medium (BCM) on primary cortical neurons were examined. The effects of pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, and minocycline (MC), an inhibitor of microglia activation, on QA-induced excitotoxicity were assessed. QA-induced NF-κB activation and TNF-α secretion, and the roles of TNF-α in excitotoxicity were studied. QA at the concentration below 1 mM had no apparent toxic effects on cultured primary neurons or BV-2 cells. However, addition of QA-primed BCM to primary neurons did aggravate QA-induced excitotoxicity. The exacerbation of QA-induced excitotoxicity by BCM was partially ameliorated by inhibiting NF-κB and microglia activation. QA induced activation of NF-κB and upregulation of TNF-α in BV-2 cells. Addition of recombinant TNF-α mimicked QA-induced excitotoxic effects on neurons, and neutralizing TNF-α with specific antibodies partially abolished exacerbation of QA-induced excitotoxicity by BCM. These studies suggested that QA activated microglia and upregulated TNF-α through NF-κB pathway in microglia. The microglia-mediated inflammatory pathway contributed, at least in part, to QA-induced excitotoxicity.
Asunto(s)
Apoptosis/efectos de los fármacos , Inflamación/genética , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/genética , Animales , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Microglía/efectos de los fármacos , Minociclina/administración & dosificación , FN-kappa B/genética , Neuronas/efectos de los fármacos , Neuronas/patología , Neurotoxinas/toxicidad , Cultivo Primario de Células , Pirrolidinas/administración & dosificación , Ácidos Quinolínicos/toxicidad , Ratas , Tiocarbamatos/administración & dosificaciónRESUMEN
The importance of tacrolimus in the treatment of myasthenia gravis (MG) as a substitute for corticosteroid-dependent immunosuppressive therapy is increasing. Thus far, however, no population pharmacokinetic (PopPK) analysis of tacrolimus in treating MG patients has been published. This article aimed to construct a PopPK model of tacrolimus for Chinese MG patients with the goal of improving its performance in MG treatment. A total of 253 trough concentration records were obtained from 83 Chinese MG patients. The effects of demographics, lifestyle and health status, biochemical test data, disease progression and treatment-related information (including co-administered medications) as covariates on the various parameters were investigated. The covariate selection was based on biological plausibility, clinical significance, statistical significance and reduction in inter-individual variability (IIV). Bootstrap and normalized prediction distribution error (NPDE) analysis were performed to validate the final model. A one-compartment PopPK model with first-order elimination and a fixed absorption phase was constructed. The estimated apparent oral clearance (CL/F) and apparent oral volume of distribution (V/F) were 3.6 L/h and 1700 L, respectively, in the MG patients. Hematocrit and blood urea nitrogen were identified as two covariates that significantly influenced the CL/F. Immunoglobulin treatment (PRO) also had the potential to influence V/F, which was consistent with the clinical observations and the high protein-binding property of tacrolimus. Other covariates including age, weight, gender and co-administered medications had no obvious influence on CL/F or V/F. The first PopPK model of tacrolimus in MG patients was established. The identified covariates were of biological plausibility and clinical importance to help individualize the dosing schedule in MG patients.
Asunto(s)
Inmunosupresores/farmacocinética , Miastenia Gravis/tratamiento farmacológico , Tacrolimus/farmacocinética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Inmunosupresores/uso terapéutico , Masculino , Persona de Mediana Edad , Miastenia Gravis/metabolismo , Tacrolimus/uso terapéutico , Adulto JovenRESUMEN
Phytochemical investigation on the stems of C. tabularis (Meliaceae) led to the isolation of two new phragmalin-type limonoids, named tabularisins S and T (1-2), along with five known ones (3-7). The structures of the new limonoids were established by spectroscopic methods including UV, IR, HRESIMS, and 1D and 2D NMR. All the compounds were evaluated for α-glucosidase inhibitory activity in vitro. Compounds 2 and 3 exhibited significant inhibitory activity against α-glucosidase with IC50 values of 0.15 and 0.03 mM, respectively (acarbose as positive control, IC50 0.95 mM).
Asunto(s)
Medicamentos Herbarios Chinos , Inhibidores de Glicósido Hidrolasas , Limoninas , Meliaceae/química , alfa-Glucosidasas/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Limoninas/química , Limoninas/aislamiento & purificación , Limoninas/farmacología , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Corteza de la Planta/química , Tallos de la Planta/químicaRESUMEN
Phytochemical investigation on the stems of C. tabularis led to the isolation of five new phragmalin-type limonoids and six known ones. The structures of the new compounds 1-5, named chukbularisins A-E, were elucidated by spectroscopic techniques (IR, HRESIMS, 1D and 2D NMR) and comparisons with published data. All the compounds were evaluated for in vitro α-glucosidase inhibitory activity. Compounds 2, 3, 4, 5, and 8 exhibited inhibitory activity against α-glucosidase with IC50 values of 0.06 ± 0.008, 0.04 ± 0.002, 0.52 ± 0.039, 1.09 ± 0.040, and 0.20 ± 0.057 mM, respectively (using acarbose as positive control, IC50 0.95 ± 0.092 mM).
Asunto(s)
Inhibidores Enzimáticos/química , Limoninas/química , Meliaceae/química , alfa-Glucosidasas/química , Inhibidores Enzimáticos/aislamiento & purificación , Limoninas/aislamiento & purificación , Extracción Líquido-Líquido/métodos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Tallos de la Planta/química , Relación Estructura-ActividadRESUMEN
Hydrogenation-induced modification of magnetic properties has been widely studied. A Mg spacer layer with high hydrogen storage stability was clamped in a Pd/Co/Mg/Fe multilayer structure to enhance its hydrogen storage stability and explore the structure's magneto-transport properties. After 1 bar hydrogen exposure, the formation of a stable MgH2 phase was demonstrated in an ambient environment at room temperature through X-ray diffraction. Lower magnetic coupling and enhanced magnetoresistance, compared to those of the as-grown sample, were observed using the longitudinal magneto-optical Kerr effect and a four-probe measurement. In this study, the hydrogenation stability of ferromagnetic multilayers was improved, and the concept of a hydrogenation-based spintronic device was developed.
RESUMEN
OBJECTIVES: Gout is a common disease caused by hyperglycemia. Traditional drugs for gout have both good therapeutic effects and serious side effects. Traditional Chinese medicine (TCM) is one of the potential sources of modern medicine, and is the development of new drugs for many diseases, including gout. TCM is an indispensable part of gout treatment. Compared with anti-gout medication commonly used in clinic (e.g. the xanthine oxidase inhibitors allopurinol and febuxostat), traditional Chinese medicine has fewer side effects in the treatment of gout and can safely control serum uric acid and the level of inflammation. However, there have been few studies on how traditional Chinese medicine controls uric acid and inflammation levels in patients with gout. KEY FINDINGS: Herbs are a valuable resource in the search for new drugs to treat many diseases, including gout. Phytochemicals in TCM treatment of gout mainly includes two aspects, anti-inflammatory and reducing uric acid content. The anti-inflammatory mechanism is mainly through the inactivation of NF-κB and NLRP3 inflammasome to reduce the inflammatory response induced by uric acid crystals. The mechanism of lowering uric acid is mainly through inhibiting the activity of xanthine oxidase and up-regulating the expression of URAT1 and GLUT9.In recent years, the intestinal flora has become a new field of understanding diseases. It has been observed that the occurrence of gout is closely related to changes in the intestinal flora. Herbaceous plants contain fiber, polyphenols, polysaccharides and other active components. When taken orally, Chinese herbs act like prebiotics. After traditional Chinese medicine treatment, the abundance levels of Bifidobacterium, Lactobacillus, Bacteroidetes and Prevotella were increased, while the abundance of Proteus and the Firmicutes/Bacteroidetes ratio were decreased. Changes in the intestinal flora led to further changes in its metabolites, including short-chain fatty acids (SCFAs) and lipopolysaccharide (LPS), which ultimately down-regulate the TLR4/NF-κB inflammatory signaling pathway, up-regulate GLUT9 and URAT1 gene expression and inhibition of xanthine oxidase activity. Destruction of the intestinal barrier is also an important factor in the occurrence of gout. Disruption of the intestinal barrier allows LPS to enter the bloodstream and activates the expression of various inflammatory factors, which causes gout.
Asunto(s)
Microbioma Gastrointestinal , Gota , Hiperuricemia , Gota/tratamiento farmacológico , Humanos , Hiperuricemia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Medicina Tradicional China , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Fitoquímicos/efectos adversos , Ácido Úrico , Xantina Oxidasa/metabolismoRESUMEN
Chrysanthemum morifolium is a well-known edible medicinal plant in Asia and some other regions. Content of selenium in Se-enriched C. morifolium (SeCM) is significantly higher than that in traditional C. morifolium (non-Se-enriched C. morifolium, TCM). In order to understand health effects of SeCM, its chemical composition, lifespan-prolonging activities, and impacts on antioxidant defense-related gene expressions of model organism D. melanogaster were systematically studied. A total of eight phenols, including luteolin-7-O-glucoside, linarin, luteolin, apigenin, diosmetin, acacetin, 3-caffeoylquinic acid and 4,5-dicaffeoylquinic acid, were identified in SeCM extract. Compared with TCM, SeCM exhibited superior antioxidant properties. Intake of SeCM dramatically reduced malondialdehyde level and increased activities of endogenous antioxidant enzymes in fruit flies. SeCM was able to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase and hydrogen peroxide catalase, and extend lifespans of fruit flies. Comparatively high antioxidant capacities and lifespan-prolonging activities of SeCM might be attributed to its abundant phenols and selenium, which probably ameliorated accumulation of free radicals and susceptibility to oxidative stress. These findings provide clues on further exploitation and utilization of Se-enriched C. morifolium. PRACTICAL APPLICATIONS: Chrysanthemum morifolium has been used for nutraceutical and curative purposes in China for thousands of years. Se-enriched C. morifolium typically contains more selenium than traditional C. morifolium, and is widely consumed in Asia and some other regions. Selenium is an essential micronutrient for humans, and selenium deficiency may result in several diseases such as myocardial infarction. SeCM is one of important selenium supplements. In this study, SeCM was found to upregulate gene expressions of Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, and hydrogen peroxide catalase, and extend lifespans of experimental animals. These results provide supporting information for developing SeCM-based functional foods with distinct health benefits.
Asunto(s)
Chrysanthemum , Selenio , Humanos , Animales , Antioxidantes/farmacología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Catalasa/genética , Catalasa/metabolismo , Selenio/farmacología , Longevidad , Chrysanthemum/genética , Chrysanthemum/química , Chrysanthemum/metabolismo , Peróxido de Hidrógeno , Superóxidos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Fenoles , Expresión GénicaRESUMEN
OBJECTIVES: Nowadays, one of the most common gastrointestinal cancers is colorectal cancer (CRC). Chemotherapy is still one of the main methods to treat cancer. However, the currently available synthetic chemotherapy drugs often cause serious adverse reactions. Apoptosis is generally considered as an ideal way for induction the death of tumour cells without the body's inflammatory response, and it is reported that lots of natural agents could trigger various cancer cells to apoptosis. The overarching aim of this project was to elucidate the specific mechanisms by which natural substances induce apoptosis in CRC cells and to be used as an alternative therapeutic option in the future. KEY FINDINGS: The mechanisms for the pro-apoptotic effects of natural substances derived from herbs or plants include death receptor pathway, mitochondrial pathway, endoplasmic reticulum stress pathway, related signal transduction pathways (PI3K/Akt, MAPK, p53 signalling), and so on. SUMMARY: This paper updated this information regarding the anti-tumour effects of natural agents via induction of apoptosis against CRC, which would be beneficial for future new drug research regarding natural products from herbs or plants.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Plantas Medicinales/química , Transducción de Señal/efectos de los fármacosRESUMEN
Impulsiveness is a stable personal characteristic that contributes to obesity and may interact with it. Specifically, obesity is caused by unrestrained impulse eating that is not consciously controlled and leads to a hormonal imbalance that also can impair impulse control. However, the mechanism of this relationship is unclear. In our study, 35 obese individuals (body mass index, BMI > 28) were recruited and matched with 31 healthy controls (BMI < 24) in age and education level. All the participants underwent a resting-state fMRI and completed the Barratt Impulsiveness Scale-11. The results showed that patients with obesity had a significantly lower fractional amplitude of low-frequency fluctuations (fALFF) in the bilateral dorsolateral prefrontal cortex (dlPFC) and higher fALFF in the left fusiform cortex. In addition, non-planning impulsiveness was positively correlated with BMI. Importantly, we found that the right dlPFC completely mediated the relationship between non-planning impulsiveness and BMI. Our findings suggest that impulsivity is statistically more likely to precede obesity than to precede impulsivity and contributes to obesity by downregulating spontaneous activity in the dlPFC. This suggests that the dlPFC, which is associated with executive control, may be able a potential target for treating obesity.
RESUMEN
BACKGROUND/PURPOSE: Relieving immuno-inflammatory responses is the prerequisite step for treating periodontitis. The angiogenic small molecule, dimethyloxalylglycine (DMOG), and osteoinductive inorganic nanomaterial, nanosilicate (nSi) have a powerful effect on bone regeneration, whereas the roles in osteoimmunomodulation have not been totally uncovered. Our study aimed to explore the immunomodulatory effect of DMOG/nSi-loaded fibrous membranes on periodontal bone remodeling. MATERIALS AND METHODS: The fibrous membranes were prepared by incorporating DMOG and nSi into poly (lactic-co-glycolic acid) (PLGA) with electrospinning. The morphology features, surface chemical property and biocompatibility of DMOG/nSi-PLGA fibrous membranes were characterized. Thereafter, the fibrous membranes were implanted into rat periodontal defects, bone remodeling potential and immunomodulatory effect were evaluated by micro-computed tomography (micro-CT), histological evaluation and immunohistochemical analysis. RESULTS: DMOG/nSi-PLGA membranes possessed favorable physicochemical properties and biocompatibility. After the fibrous membranes implanted into periodontal defects, DMOG/nSi-PLGA membranes could relieve immuno-inflammatory responses of the defects (reduction of inflammatory cell infiltration, CD40L and CD11b-positive cells), increased CD206-positive M2 macrophages, and eventually facilitated periodontal bone regeneration. CONCLUSION: DMOG/nSi-PLGA fibrous membranes exert protective effects during periodontal bone defect repairing, and steer immune response towards bone regeneration. Consequently, DMOG/nSi-PLGA fibrous membranes may serve as a promising scaffold in periodontal tissue engineering.
RESUMEN
Based on the formation of free radical-hydrated electrons by the activation of sulfite (SO32-), the UV/SO32- process is an advanced reduction process that can reduce pollutants. This study investigated the degradation kinetics, mechanism, influencing factors, and degradation pathways of sodium diatrizoate (DTZ), an iodinated contrasting media, during the UV/SO32- process. The degradation kinetics of DTZ were well fitted by the pseudo-first-order model, the degradation rate of which was higher than that of UV only and UV/H2 O2. The degradation rate of DTZ during the UV/SO32- process was positively correlated with the initial SO32- concentration. Weakly alkaline and alkaline conditions promoted the degradation of DTZ, while organic matter inhibited degradation during the UV/SO32- process. The degradation mechanism included direct photolysis and free radical attack, whereby free radical attack played a more important role than direct photolysis. Sulfite radicals dominated DTZ degradation efficiency, and hydrated electrons controlled the deiodination efficiency. The degradation pathways of DTZ during the UV/SO32- process included substitution, decarboxylation-hydroxylation, and amide bond cleavage.
RESUMEN
AIM: Previous research recognizes that NADPH can produce reduced glutathione (GSH) as a coenzyme and produce ROS as a substrate of NADPH oxidase (NOX). Besides, excessive activation of glutamate receptors results in mitochondrial impairment. The study aims at spelling out the effects of NADPH and Mito-apocynin, a NOX inhibitor which specifically targets the mitochondria, on the excitotoxicity induced by Kainic acid (KA) and its mechanism. METHODS: The in vivo neuronal excitotoxicity model was constructed by stereotypically injecting KA into the unilateral striatum of mice. Administrated NADPH (i.v, intravenous) 30 min prior and Mito-apocynin (i.g, intragastric) 1 day prior, respectively, then kept administrating daily until mice were sacrificed 14 days later. Nissl staining measured the lesion of striatum and survival status of neurons. Cylinder test of forelimb asymmetry and the adhesive removal test reflected the behavioral deficit caused by neural dysfunction. Determined Total superoxide dismutase (T-SOD), malondialdehyde (MDA), and GSH indicated oxidative stress. Western blot presented the expression levels of LC3-II/LC3-I, SQSTM1/p62, TIGAR, and NOX4. Assessed oxygen consumption rate using High-Resolution Respirometry. In vitro, the MitoSOX Indicator reflected superoxide released by neuron mitochondria. JC-1 and ATP assay Kit were used to detect mitochondrial membrane potential (MMP) and energy metabolism, respectively. RESULTS: In this study, we have successfully established excitotoxic model by KA in vivo and in vitro. KA induced decreased SOD activity and increased MDA concentration. KA cause the change of LC3-II/LC3-I, SQSTM1/p62, and TIGAR expression, indicating the autophagy activation. NADPH plays a protective role in vivo and in vitro. It reversed the KA-mediated changes in LC3, SQSTM1/p62, TIGAR, and NOX4 protein expression. Mito-apocynin inhibited KA-induced increases in mitochondrial NOX4 expression and activity. Compared with NADPH, the combination showed more significant neuroprotective effects, presenting more neurons survive and better motor function recovery. The combination also better inhibited the over-activated autophagy. In vitro, combination of NADPH and Mito-apocynin performed better in restoring mitochondria membrane potential. CONCLUSION: In summary, combined administration of NADPH and NOX inhibitors offers better neuroprotection by reducing NADPH as a NOX substrate to generate ROS. The combined use of NADPH and Mito-apocynin can better restore neurons and mitochondrial function through autophagy pathway.
RESUMEN
The role of B7-H3 in acute myeloid leukemia (AML) is not fully understood. Two previous studies investigating its expression and significances in AML are partially different. In this study, we aimed to systematically characterize the genomic and immune landscape in AML patients with altered B7-H3 expression using multi-omics data in the public domain. We found significantly increased B7-H3 expression in AML compared to either other hematological malignancies or healthy controls. Clinically, high B7-H3 expression was associated with old age, TP53 mutations, wild-type WT1 and CEBPA, and the M3 and M5 FAB subtypes. Moreover, we observed that increased B7-H3 expression correlated significantly with a poor outcome of AML patients in four independent datasets. Gene set enrichment analysis (GSEA) revealed the enrichment of the "EMT" oncogenic gene signatures in high B7-H3 expressers. Further investigation suggested that B7-H3 was more likely to be associated with immune-suppressive cells (macrophages, neutrophils, dendritic cells, and Th17 cells). B7-H3 was also positively associated with a number of checkpoint genes, such as VISTA (B7-H5), CD80 (B7-1), CD86 (B7-2), and CD70. In summary, we uncovered distinct genomic and immunologic features associated with B7-H3 expression in AML. This may lead to a better understanding of the molecular mechanisms underlying B7-H3 dysregulation in AML and to the development of novel therapeutic strategies.
Asunto(s)
Antígenos B7/genética , Antígenos B7/inmunología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Línea Celular Tumoral , Expresión Génica , Humanos , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/inmunología , Mutación , Pronóstico , Mapas de Interacción de ProteínasRESUMEN
Plants could maintain growth by foliar water uptake and reverse sap flow under certain conditions, particularly in regions with seasonal drought. This physiological activity is often overlooked, however, leaving a gap in quantitatively understanding the processes and mechanisms underlying water utilization of forest vegetation under drought stress. In this study, with both field comparison experiments and pot experiments, we used heat ratio method with stable isotope technique to monitor a typical plantation tree species, Platycladus orientalis, in the Beijing mountainous area. We aimed to analyze the patterns and the influencing factors of the reverse sap flow occurrence in P. orientalis, to quantify the amount and the replenishment rate of reverse sap flow, and to examine the characteristics and processes of reverse sap flow at different parts of plants. In the field comparison experiment, reverse sap flow was detected at the breast height of stem and in the root in the controlled plot (drought plot) after rainfall. The reverse sap flow of root system was detected later than that in the stem. By contrast, no reverse sap flow was observed in the natural plot. In the pot experiments, the recharge rate of all the groups reached the peak value two hours after the rainfall treatment. Except for the groups of severe and moderate drought, recovery of δD to the original level was observed eight hours after rainfall, and the reverse sap flow on plants generally lasted no more than 24 h. The amount of foliar water uptake and the reverse sap flow to the branches and rhizosphere soil had a negative relationship with the initial soil moisture. The maximum recharge rates for leaves, branches, and rhizosphere soil were (9.5±0.1)%, (5.9±0.3)% and (5.7%±0.6)%, respectively. Different rates and timing of the reverse sap flow were observed at different parts of P. orientalis. Under complex and variable conditions of water supply, it is of great significance to examine the process and mechanism of reverse water movement of plants to better understand its survival and competitive strategies.