Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 26(Pt 6): 1956-1966, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721741

RESUMEN

The full radiation from the first harmonic of a synchrotron undulator (between 5 and 12 keV) at the Advanced Photon Source is microfocused using a stack of beryllium compound refractive lenses onto a fast-moving liquid jet and overlapped with a high-repetition-rate optical laser. This micro-focused geometry is used to perform efficient nonresonant X-ray emission spectroscopy on transient species using a dispersive spectrometer geometry. The overall usable flux achieved on target is above 1015 photons s-1 at 8 keV, enabling photoexcited systems in the liquid phase to be tracked with time resolutions from tens of picoseconds to microseconds, and using the full emission spectrum, including the weak valence-to-core signal that is sensitive to chemically relevant electronic properties.

2.
J Synchrotron Radiat ; 24(Pt 2): 402-412, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28244433

RESUMEN

An engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to expose 30 GlidCop® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.

3.
J Synchrotron Radiat ; 24(Pt 6): 1146-1151, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091057

RESUMEN

A bent Laue double-crystal monochromator system has been designed for vertically expanding the X-ray beam at the Canadian Light Source's BioMedical Imaging and Therapy beamlines. Expansion by a factor of 12 has been achieved without deteriorating the transverse coherence of the beam, allowing phase-based imaging techniques to be performed with high flux and a large field of view. However, preliminary studies revealed a lack of uniformity in the beam, presumed to be caused by imperfect bending of the silicon crystal wafers used in the system. Results from finite-element analysis of the system predicted that the second crystal would be most severely affected and has been shown experimentally. It has been determined that the majority of the distortion occurs in the second crystal and is likely caused by an imperfection in the surface of the bending frame. Measurements were then taken to characterize the bending of the crystal using both mechanical and diffraction techniques. In particular, two techniques commonly used to map dislocations in crystal structures have been adapted to map local curvature of the bent crystals. One of these, a variation of Berg-Berrett topography, has been used to quantify the diffraction effects caused by the distortion of the crystal wafer. This technique produces a global mapping of the deviation of the diffraction angle relative to a perfect cylinder. This information is critical for improving bending and measuring tolerances of imperfections by correlating this mapping to areas of missing intensity in the beam.

4.
J Synchrotron Radiat ; 22(4): 930-5, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26134796

RESUMEN

The radiation from an undulator reflected from one or more optical elements (usually termed `pink-beam') is used in photon-hungry experiments. The optical elements serve as a high-energy cutoff and for focusing purposes. One of the issues with this configuration is maintaining the focal spot dimension as the energy of the undulator is varied, since this changes the heat load absorbed by the first optical element. Finite-element analyses of the power absorbed by a side water-cooled mirror exposed to the radiation emitted by an undulator at the Advanced Photon Source (APS) and at the APS after the proposed upgrade (APSU) reveals that the mirror deformation is very close to a convex cylinder creating a virtual source closer to the mirror than the undulator source. Here a simple optical system is described based on a Kirkpatrick-Baez pair which keeps the focus size to less than 2 µm (in the APSU case) with a working distance of 350 mm despite the heat-load-induced change in source distance. Detailed ray tracings at several photon energies for both the APS and APSU show that slightly decreasing the angle of incidence on the mirrors corrects the change in the `virtual' position of the source. The system delivers more than 70% of the first undulator harmonic with very low higher-orders contamination for energies between 5 and 10 keV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA