Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(9): 5615-5628, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33656023

RESUMEN

Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in prime protein locations and running two-color step-scan FTIR spectroscopy on the Deinococcus radiodurans bacteriophytochrome, we track the signal propagation at three specific sites in the photosensory unit. We show that a structurally switchable hairpin extension, a so-called tongue region, responds to the photoconversion already in microseconds and finalizes its structural changes concomitant with the chromophore, in milliseconds. In contrast, kinetics from the other two label positions indicate that the site-specific changes deviate from the chromophore actions, even though the labels locate in the chromophore vicinity. Several other sites for labeling resulted in impaired photoswitching, low structural stability, or no changes in the difference spectrum, which provides additional information on the inner dynamics of the photosensory unit. Our work enlightens the multidimensionality of the structural changes of proteins under action. The study also shows that the signaling mechanism of phytochromes is accessible in a time-resolved and site-specific approach by azido probes and demonstrates challenges in using these labels.


Asunto(s)
Azidas/química , Proteínas Bacterianas/química , Fenilalanina/análogos & derivados , Fitocromo/química , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Cinética , Modelos Moleculares , Fenilalanina/química , Procesos Fotoquímicos , Unión Proteica , Conformación Proteica , Transducción de Señal , Espectroscopía Infrarroja por Transformada de Fourier , Coloración y Etiquetado
2.
J Am Chem Soc ; 140(39): 12396-12404, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30183281

RESUMEN

Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply two-color step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach in the second intermediate (Meta-R), and finally reform in the signaling state (Pfr). The spectra reveal via isotope labeling that the refolding of the conserved "PHY-tongue" region occurs with the last transition between Meta-R and Pfr. Additional changes in the protein backbone are detected already within microseconds in Lumi-R. Aided by molecular dynamics simulations, we find that a strictly conserved salt bridge between an arginine of the PHY tongue and an aspartate of the chromophore binding domains is broken in Lumi-R and the arginine is recruited to the D-ring C═O. This rationalizes how isomerization of the chromophore is linked to the global structural rearrangement in the sensory receptor. Our findings advance the structural understanding of phytochrome photoactivation.


Asunto(s)
Biliverdina/química , Deinococcus/química , Fitocromo/química , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biliverdina/metabolismo , Deinococcus/metabolismo , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Fitocromo/metabolismo , Conformación Proteica en Lámina beta , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
3.
Photochem Photobiol ; 95(4): 969-979, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843203

RESUMEN

Red-light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large-scale secondary and tertiary changes which follow small-scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore-binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH-dependent UV-Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family.


Asunto(s)
Deinococcus/metabolismo , Fitocromo/química , Análisis Espectral/métodos , Sitios de Unión , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Modelos Moleculares , Fitocromo/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA