Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(2): 429-446.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32526206

RESUMEN

The mode of acquisition and causes for the variable clinical spectrum of coronavirus disease 2019 (COVID-19) remain unknown. We utilized a reverse genetics system to generate a GFP reporter virus to explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis and a luciferase reporter virus to demonstrate sera collected from SARS and COVID-19 patients exhibited limited cross-CoV neutralization. High-sensitivity RNA in situ mapping revealed the highest angiotensin-converting enzyme 2 (ACE2) expression in the nose with decreasing expression throughout the lower respiratory tract, paralleled by a striking gradient of SARS-CoV-2 infection in proximal (high) versus distal (low) pulmonary epithelial cultures. COVID-19 autopsied lung studies identified focal disease and, congruent with culture data, SARS-CoV-2-infected ciliated and type 2 pneumocyte cells in airway and alveolar regions, respectively. These findings highlight the nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS-CoV-2 pathogenesis. These reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Neumonía Viral/patología , Neumonía Viral/virología , Sistema Respiratorio/virología , Genética Inversa/métodos , Anciano , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/terapia , Fibrosis Quística/patología , ADN Recombinante , Femenino , Furina/metabolismo , Humanos , Inmunización Pasiva , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , Mucosa Nasal/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Sistema Respiratorio/patología , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Células Vero , Virulencia , Replicación Viral , Sueroterapia para COVID-19
2.
J Allergy Clin Immunol ; 153(2): 487-502.e9, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37956733

RESUMEN

BACKGROUND: Allergic asthma is driven largely by allergen-specific TH2 cells, which develop in regional lymph nodes on the interaction of naive CD4+ T cells with allergen-bearing dendritic cells that migrate from the lung. This migration event is dependent on CCR7 and its chemokine ligand, CCL21. However, is has been unclear whether the other CCR7 ligand, CCL19, has a role in allergic airway disease. OBJECTIVE: This study sought to define the role of CCL19 in TH2 differentiation and allergic airway disease. METHODS: Ccl19-deficient mice were studied in an animal model of allergic asthma. Dendritic cells or fibroblastic reticular cells from wild-type and Ccl19-deficient mice were cultured with naive CD4+ T cells, and cytokine production was measured by ELISA. Recombinant CCL19 was added to CD4+ T-cell cultures, and gene expression was assessed by RNA-sequencing and quantitative PCR. Transcription factor activation was assessed by flow cytometry. RESULTS: Lungs of Ccl19-deficient mice had less allergic airway inflammation, reduced airway hyperresponsiveness, and less IL-4 and IL-13 production compared with lungs of Ccl19-sufficient animals. Naive CD4+ T cells cocultured with Ccl19-deficient dendritic cells or fibroblastic reticular cells produced lower amounts of type 2 cytokines than did T cells cocultured with their wild-type counterparts. Recombinant CCL19 increased phosphorylation of STAT5 and induced expression of genes associated with TH2 cell and IL-2 signaling pathways. CONCLUSIONS: These results reveal a novel, TH2 cell-inducing function of CCL19 in allergic airway disease and suggest that strategies to block this pathway might help to reduce the incidence or severity of allergic asthma.


Asunto(s)
Asma , Hipersensibilidad , Animales , Ratones , Quimiocina CCL19/genética , Receptores CCR7 , Ligandos , Asma/genética , Inflamación/patología , Pulmón , Hipersensibilidad/metabolismo , Alérgenos/metabolismo , Diferenciación Celular , Células Th2 , Células Dendríticas
3.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L765-L775, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847709

RESUMEN

Airway mucociliary clearance (MCC) is required for host defense and is often diminished in chronic lung diseases. Effective clearance depends upon coordinated actions of the airway epithelium and a mobile mucus layer. Dysregulation of the primary secreted airway mucin proteins, MUC5B and MUC5AC, is associated with a reduction in the rate of MCC; however, how other secreted proteins impact the integrity of the mucus layer and MCC remains unclear. We previously identified the gene Bpifb1/Lplunc1 as a regulator of airway MUC5B protein levels using genetic approaches. Here, we show that BPIFB1 is required for effective MCC in vivo using Bpifb1 knockout (KO) mice. Reduced MCC in Bpifb1 KO mice occurred in the absence of defects in epithelial ion transport or reduced ciliary beat frequency. Loss of BPIFB1 in vivo and in vitro altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC. Finally, we detected colocalization of BPIFB1 and MUC5B in secretory granules in mice and the protein mesh of secreted mucus in human airway epithelia cultures. Collectively, our findings demonstrate that BPIFB1 is an important component of the mucociliary apparatus in mice and a key component of the mucus protein network.NEW & NOTEWORTHY BPIFB1, also known as LPLUNC1, was found to regulate mucociliary clearance (MCC), a key aspect of host defense in the airway. Loss of this protein was also associated with altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC.


Asunto(s)
Enfermedades Pulmonares , Depuración Mucociliar , Ratones , Humanos , Animales , Depuración Mucociliar/fisiología , Sistema Respiratorio/metabolismo , Moco/metabolismo , Enfermedades Pulmonares/metabolismo , Ratones Noqueados
4.
Thorax ; 77(8): 812-820, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34697091

RESUMEN

INTRODUCTION: Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS: We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS: DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION: DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.


Asunto(s)
Enfermedades Pulmonares Obstructivas , Nanopartículas , Animales , ADN , Terapia Genética , Humanos , Pulmón/metabolismo , Enfermedades Pulmonares Obstructivas/terapia , Ratones , Moco/metabolismo
5.
Nature ; 505(7483): 412-6, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24317696

RESUMEN

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Asunto(s)
Pulmón/inmunología , Mucina 5B/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Animales , Asma/inmunología , Asma/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Cilios/fisiología , Oído Medio/inmunología , Oído Medio/microbiología , Femenino , Inflamación/patología , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Mucina 5AC/deficiencia , Mucina 5AC/metabolismo , Mucina 5B/deficiencia , Mucina 5B/genética , Fagocitosis , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Staphylococcus aureus/inmunología , Análisis de Supervivencia
6.
Am J Respir Crit Care Med ; 199(6): 715-727, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30352166

RESUMEN

RATIONALE: MUC5AC and MUC5B are the predominant gel-forming mucins in the mucus layer of human airways. Each mucin has distinct functions and site-specific expression. However, the regional distribution of expression and cell types that secrete each mucin in normal/healthy human airways are not fully understood. OBJECTIVES: To characterize the regional distribution of MUC5B and MUC5AC in normal/healthy human airways and assess which cell types produce these mucins, referenced to the club cell secretory protein (CCSP). METHODS: Multiple airway regions from 16 nonsmoker lungs without a history of lung disease were studied. MUC5AC, MUC5B, and CCSP expression/colocalization were assessed by RNA in situ hybridization and immunohistochemistry in five lungs with histologically healthy airways. Droplet digital PCR and cell cultures were performed for absolute quantification of MUC5AC/5B ratios and protein secretion, respectively. MEASUREMENTS AND MAIN RESULTS: Submucosal glands expressed MUC5B, but not MUC5AC. However, MUC5B was also extensively expressed in superficial epithelia throughout the airways except for the terminal bronchioles. Morphometric calculations revealed that the distal airway superficial epithelium was the predominant site for MUC5B expression, whereas MUC5AC expression was concentrated in proximal, cartilaginous airways. RNA in situ hybridization revealed MUC5AC and MUC5B were colocalized with CCSP-positive secretory cells in proximal superficial epithelia, whereas MUC5B and CCSP-copositive cells dominated distal regions. CONCLUSIONS: In normal/healthy human airways, MUC5B is the dominant secretory mucin in the superficial epithelium and glands, with distal airways being a major site of expression. MUC5B and MUC5AC expression is a property of CCSP-positive secretory cells in superficial airway epithelia.


Asunto(s)
Pulmón/diagnóstico por imagen , Pulmón/fisiología , Mucina 5AC/análisis , Mucina 5B/análisis , Transporte de Proteínas/fisiología , Fenómenos Fisiológicos Respiratorios , Humanos
7.
Am J Respir Crit Care Med ; 199(2): 171-180, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30212240

RESUMEN

RATIONALE: Airways obstruction with thick, adherent mucus is a pathophysiologic and clinical feature of muco-obstructive respiratory diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis (CF). Mucins, the dominant biopolymer in mucus, organize into complex polymeric networks via the formation of covalent disulfide bonds, which govern the viscoelastic properties of the mucus gel. For decades, inhaled N-acetylcysteine (NAC) has been used as a mucolytic to reduce mucin disulfide bonds with little, if any, therapeutic effects. Improvement of mucolytic therapy requires the identification of NAC deficiencies and the development of compounds that overcome them. OBJECTIVES: Elucidate the pharmacological limitations of NAC and test a novel mucin-reducing agent, P3001, in preclinical settings. METHODS: The study used biochemical (e.g., Western blotting, mass spectrometry) and biophysical assays (e.g., microrheology/macrorheology, spinnability, mucus velocity measurements) to test compound efficacy and toxicity in in vitro and in vivo models and patient sputa. MEASUREMENTS AND MAIN RESULTS: Dithiothreitol and P3001 were directly compared with NAC in vitro and both exhibited superior reducing activities. In vivo, P3001 significantly decreased lung mucus burden in ßENaC-overexpressing mice, whereas NAC did not (n = 6-24 mice per group). In NAC-treated CF subjects (n = 5), aerosolized NAC was rapidly cleared from the lungs and did not alter sputum biophysical properties. In contrast, P3001 acted faster and at lower concentrations than did NAC, and it was more effective than DNase in CF sputum ex vivo. CONCLUSIONS: These results suggest that reducing the viscoelasticity of airway mucus is an achievable therapeutic goal with P3001 class mucolytic agents.


Asunto(s)
Asma/tratamiento farmacológico , Fibrosis Quística/tratamiento farmacológico , Expectorantes/uso terapéutico , Depuración Mucociliar/efectos de los fármacos , Moco/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Acetilcisteína/uso terapéutico , Animales , Asma/fisiopatología , Fibrosis Quística/fisiopatología , Modelos Animales de Enfermedad , Ditiotreitol/uso terapéutico , Humanos , Técnicas In Vitro , Masculino , Ratones , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
8.
Am J Respir Crit Care Med ; 200(2): 220-234, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30973754

RESUMEN

Rationale: The goal was to connect elements of idiopathic pulmonary fibrosis (IPF) pathogenesis, including chronic endoplasmic reticulum stress in respiratory epithelia associated with injury/inflammation and remodeling, distal airway mucus obstruction and honeycomb cyst formation with accumulation of MUC5B (mucin 5B), and associations between IPF risk and polymorphisms in the MUC5B promoter. Objectives: To test whether the endoplasmic reticulum (ER) stress sensor protein ERN2 (ER-to-nucleus signaling 2) and its downstream effector, the spliced form of XBP1S (X-box-binding protein 1), regulate MUC5B expression and differentially activate the MUC5B promoter variant in respiratory epithelia. Methods: Primary human airway epithelial (HAE) cells, transgenic mouse models, human IPF lung tissues, and cell lines expressing XBP1S and MUC5B promoters were used to explore relationships between the ERN2/XBP1S pathway and MUC5B. An inhibitor of the pathway, KIRA6, and XBP1 CRISPR-Cas9 were used in HAE cells to explore therapeutic potential. Measurements and Main Results: ERN2 regulated MUC5B and MUC5AC mRNAs. Downstream XBP1S selectively promoted MUC5B expression in vitro and in distal murine airway epithelia in vivo. XBP1S bound to the proximal region of the MUC5B promoter and differentially upregulated MUC5B expression in the context of the MUC5B promoter rs35705950 variant. High levels of ERN2 and XBP1S were associated with excessive MUC5B mRNAs in distal airways of human IPF lungs. Cytokine-induced MUC5B expression in HAE cells was inhibited by KIRA6 and XBP1 CRISPR-Cas9. Conclusions: A positive feedback bistable ERN2-XBP1S pathway regulates MUC5B-dominated mucus obstruction in IPF, providing an unfolded protein response-dependent mechanism linking the MUC5B promoter rs35705950 polymorphism with IPF pathogenesis. Inhibiting ERN2-dependent pathways/elements may provide a therapeutic option for IPF.


Asunto(s)
Endorribonucleasas/genética , Fibrosis Pulmonar Idiopática/genética , Proteínas de la Membrana/genética , Proteínas Serina-Treonina Quinasas/genética , Mucosa Respiratoria/metabolismo , Proteína 1 de Unión a la X-Box/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/metabolismo , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Polimorfismo Genético , Cultivo Primario de Células , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo
9.
Am J Respir Cell Mol Biol ; 61(3): 312-321, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30896965

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disease caused by mutations in over 40 different genes. Individuals with PCD caused by mutations in RSPH1 (radial spoke head 1 homolog) have been reported to have a milder phenotype than other individuals with PCD, as evidenced by a lower incidence of neonatal respiratory distress, higher nasal nitric oxide concentrations, and better lung function. To better understand genotype-phenotype relationships in PCD, we have characterized a mutant mouse model with a deletion of Rsph1. Approximately 50% of cilia from Rsph1-/- cells appeared normal by transmission EM, whereas the remaining cilia revealed a range of defects, primarily transpositions or a missing central pair. Ciliary beat frequency in Rsph1-/- cells was significantly lower than in control cells (20.2 ± 0.8 vs. 25.0 ± 0.9 Hz), and the cilia exhibited an aberrant rotational waveform. Young Rsph1-/- animals demonstrated a low rate of mucociliary clearance in the nasopharynx that was reduced to zero by about 1 month of age. Rsph1-/- animals accumulated mucus in the nasal cavity but had a lower bacterial burden than animals with a deletion of dynein axonemal intermediate chain 1 (Dnaic1-/-). Thus, Rsph1-/- mice display a PCD phenotype similar to but less severe than that observed in Dnaic1-/- mice, similar to what has been observed in humans. The results suggest that some individuals with PCD may not have a complete loss of mucociliary clearance and further suggest that early diagnosis and intervention may be important to maintain this low amount of clearance.


Asunto(s)
Proteínas de Unión al ADN/genética , Síndrome de Kartagener/genética , Depuración Mucociliar/genética , Fenotipo , Animales , Axonema/genética , Cilios/genética , Humanos , Ratones , Mutación/genética , Eliminación de Secuencia/genética
10.
Am J Respir Crit Care Med ; 198(1): 67-76, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29481290

RESUMEN

RATIONALE: E-cigarettes vaporize propylene glycol/vegetable glycerin (PG/VG), nicotine, and flavorings. However, the long-term health effects of exposing lungs to vaped e-liquids are unknown. OBJECTIVES: To determine the effects of chronic vaping on pulmonary epithelia. METHODS: We performed research bronchoscopies on healthy nonsmokers, cigarette smokers, and e-cigarette users (vapers) and obtained bronchial brush biopsies and lavage samples from these subjects for proteomic investigation. We further employed in vitro and murine exposure models to support our human findings. MEASUREMENTS AND MAIN RESULTS: Visual inspection by bronchoscopy revealed that vaper airways appeared friable and erythematous. Epithelial cells from biopsy samples revealed approximately 300 proteins that were differentially expressed in smoker and vaper airways, with only 78 proteins being commonly altered in both groups and 113 uniquely altered in vapers. For example, CYP1B1 (cytochrome P450 family 1 subfamily B member 1), MUC5AC (mucin 5 AC), and MUC4 levels were increased in vapers. Aerosolized PG/VG alone significantly increased MUC5AC protein in human airway epithelial cultures and in murine nasal epithelia in vivo. We also found that e-liquids rapidly entered cells and that PG/VG reduced membrane fluidity and impaired protein diffusion. CONCLUSIONS: We conclude that chronic vaping exerts marked biological effects on the lung and that these effects may in part be mediated by the PG/VG base. These changes are likely not harmless and may have clinical implications for the development of chronic lung disease. Further studies will be required to determine the full extent of vaping on the lung.


Asunto(s)
Bronquios/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Nicotina/efectos adversos , Proteoma/efectos de los fármacos , Fumadores , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
Am J Respir Cell Mol Biol ; 59(3): 383-396, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29579396

RESUMEN

Understanding how expression of airway secretory mucins MUC5B and MUC5AC is regulated in health and disease is important to elucidating the pathogenesis of mucoobstructive respiratory diseases. The transcription factor SPDEF (sterile α-motif pointed domain epithelial specific transcription factor) is a key regulator of MUC5AC, but its role in regulating MUC5B in health and in mucoobstructive lung diseases is unknown. Characterization of Spdef-deficient mice upper and lower airways demonstrated region-specific, Spdef-dependent regulation of basal Muc5b expression. Neonatal Spdef-deficient mice exhibited reductions in BAL Muc5ac and Muc5b. Adult Spdef-deficient mice partially phenocopied Muc5b-deficient mice as they exhibited reduced Muc5b in nasopharyngeal and airway epithelia but not in olfactory Bowman glands, 75% incidence of nasopharyngeal hair/mucus plugs, and mild bacterial otitis media, without defective mucociliary clearance in the nasopharynx. In contrast, tracheal mucociliary clearance was reduced in Spdef-deficient mice in the absence of lung disease. To evaluate the role of Spdef in the development and persistence of Muc5b-predominant mucoobstructive lung disease, Spdef-deficient mice were crossed with Scnn1b-transgenic (Scnn1b-Tg) mice, which exhibit airway surface dehydration-induced airway mucus obstruction and inflammation. Spdef-deficient Scnn1b-Tg mice exhibited reduced Muc5ac, but not Muc5b, expression and BAL content. Airway mucus obstruction was not decreased in Spdef-deficient Scnn1b-Tg mice, consistent with Muc5b-dominant Scnn1b disease, but increased airway neutrophilia was observed compared with Spdef-sufficient Scnn1b-Tg mice. Collectively, these results indicate that Spdef regulates baseline Muc5b expression in respiratory epithelia but does not contribute to Muc5b regulation in a mouse model of Muc5b-predominant mucus obstruction caused by airway dehydration.


Asunto(s)
Enfermedades Pulmonares/metabolismo , Mucina 5B/metabolismo , Depuración Mucociliar/fisiología , Proteínas Proto-Oncogénicas c-ets/genética , Animales , Canales Epiteliales de Sodio/genética , Enfermedades Pulmonares/genética , Ratones Transgénicos , Mucina 5B/genética
12.
Am J Physiol Lung Cell Mol Physiol ; 314(2): L318-L331, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074490

RESUMEN

The epithelial Na+ channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, ß, and γ, which are differentially expressed (α > ß > γ). Airway-targeted overexpression of the ß subunit results in Na+ hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality. Notably, mice overexpressing the α- or γ-subunit do not exhibit airway Na+ hyperabsorption or lung pathology. To test whether overexpression of multiple ENaC subunits produced Na+ transport and disease severity exceeding that of ßENaC-Tg mice, we generated double (αß, αγ, ßγ) and triple (αßγ) transgenic mice and characterized their lung phenotypes. Double αγENaC-Tg mice were indistinguishable from WT littermates. In contrast, double ßγENaC-Tg mice exhibited airway Na+ absorption greater than that of ßENaC-Tg mice, which was paralleled by worse survival, decreased mucociliary clearance, and more severe lung pathology. Double αßENaC-Tg mice exhibited Na+ transport rates comparable to those of ßENaC-Tg littermates. However, αßENaC-Tg mice had poorer survival and developed severe parenchymal consolidation. In situ hybridization (RNAscope) analysis revealed both alveolar and airway αENaC-Tg overexpression. Triple αßγENaC-Tg mice were born in Mendelian proportions but died within the first day of life, and the small sample size prevented analyses of cause(s) of death. Cumulatively, these results indicate that overexpression of ßENaC is rate limiting for generation of pathological airway surface dehydration. Notably, airway co-overexpression of ß- and γENaC had additive effects on Na+ transport and disease severity, suggesting dose dependency of these two variables.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Enfermedades Pulmonares/patología , Neumonía/patología , Mucosa Respiratoria/patología , Animales , Canales Epiteliales de Sodio/genética , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Fenotipo , Neumonía/etiología , Neumonía/metabolismo , Mucosa Respiratoria/metabolismo , Transducción de Señal
13.
Am J Respir Cell Mol Biol ; 54(2): 210-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26121027

RESUMEN

Resident immune cells (e.g., macrophages [MΦs]) and airway mucus clearance both contribute to a healthy lung environment. To investigate interactions between pulmonary MΦ function and defective mucus clearance, a genetic model of lysozyme M (LysM) promoter-mediated MΦ depletion was generated, characterized, and crossed with the sodium channel ß subunit transgenic (Scnn1b-Tg) mouse model of defective mucus clearance. Diphtheria toxin A-mediated depletion of LysM(+) pulmonary MΦs in wild-type mice with normal mucus clearance resulted in lethal pneumonia in 24% of neonates. The pneumonias were dominated by Pasteurella pneumotropica and accompanied by emaciation, neutrophilic inflammation, and elevated Th1 cytokines. The incidence of emaciation and pneumonia reached 51% when LysM(+) MΦ depletion was superimposed on the airway mucus clearance defect of Scnn1b-Tg mice. In LysM(+) MΦ-depleted Scnn1b-Tg mice, pneumonias were associated with a broader spectrum of bacterial species and a significant reduction in airway mucus plugging. Bacterial burden (CFUs) was comparable between Scnn1b-Tg and nonpneumonic LysM(+) MΦ-depleted Scnn1b-Tg mice. However, the nonpneumonic LysM(+) MΦ-depleted Scnn1b-Tg mice exhibited increased airway inflammation, the presence of neutrophilic infiltration, and increased levels of inflammatory cytokines in bronchoalveolar lavage fluid compared with Scnn1b-Tg mice. Collectively, these data identify key MΦ-mucus clearance interactions with respect to both infectious and inflammatory components of muco-obstructive lung disease.


Asunto(s)
Pulmón/inmunología , Macrófagos/inmunología , Depuración Mucociliar , Infecciones por Pasteurella/inmunología , Pasteurella pneumotropica/inmunología , Neumonía Bacteriana/inmunología , Animales , Animales Recién Nacidos , Citocinas/inmunología , Citocinas/metabolismo , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Muramidasa/genética , Infecciones por Pasteurella/genética , Infecciones por Pasteurella/metabolismo , Infecciones por Pasteurella/microbiología , Pasteurella pneumotropica/patogenicidad , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fenotipo , Neumonía Bacteriana/genética , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/microbiología , Regiones Promotoras Genéticas
14.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L860-7, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26968767

RESUMEN

Respiratory infections are a major cause of morbidity and mortality in the elderly. Previous reports have suggested that mucociliary clearance (MCC) is impaired in older individuals, but the cause is unclear. To unravel the mechanisms responsible for the age-associated decline in MCC, we investigated the MCC system in young (3 mo) and old (2 yr) C57BL/6 mice. We found that old mice had significantly reduced MCC function in both the upper and lower airways compared with young mice. Measurement of bioelectric properties of isolated tracheal and bronchial tissue revealed a significant decrease in Cl(-) secretion, suggesting that the older mice may have a reduced ability to maintain a sufficiently hydrated airway surface for efficient MCC. Ciliary beat frequency was also observed to be reduced in the older animals; however, this reduction was small relative to the reduction in MCC. Interestingly, the level of the major secreted mucin, Muc5b, was found to be reduced in both bronchioalveolar lavage and isolated tracheal tissue. Our previous studies of Muc5b(-/-) mice have demonstrated that Muc5b is essential for normal MCC in the mouse. Furthermore, examination of Muc5b(+/-) and wild-type animals revealed that heterozygous animals, which secrete ∼50% of the wild-type level of Muc5b, also demonstrate a markedly reduced level of MCC, confirming the importance of Muc5b levels to MCC. These results demonstrate that aged mice exhibit a decrease in MCC and suggest that a reduced level of secretion of both Cl(-) and Muc5b may be responsible.


Asunto(s)
Envejecimiento , Mucina 5B/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Cloruros/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Depuración Mucociliar , Tráquea/metabolismo
15.
Purinergic Signal ; 12(4): 627-635, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27421735

RESUMEN

In addition to their role in glycosylation reactions, UDP-sugars are released from cells and activate widely distributed cell surface P2Y14 receptors (P2Y14R). However, the physiological/pathophysiological consequences of UDP-sugar release are incompletely defined. Here, we report that UDP-glucose levels are abnormally elevated in lung secretions from patients with cystic fibrosis (CF) as well as in a mouse model of CF-like disease, the ßENaC transgenic (Tg) mouse. Instillation of UDP-glucose into wild-type mouse tracheas resulted in enhanced neutrophil lung recruitment, and this effect was nearly abolished when UDP-glucose was co-instilled with the P2Y14R antagonist PPTN [4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl-2-naphthoic acid]. Importantly, administration of PPTN to ßENaC-Tg mice reduced neutrophil lung inflammation. These results suggest that UDP-glucose released into the airways acts as a local mediator of neutrophil inflammation.


Asunto(s)
Fibrosis Quística/metabolismo , Pulmón/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Uridina Difosfato Glucosa/farmacología , Adenosina Trifosfato/metabolismo , Adulto , Animales , Fibrosis Quística/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Esputo/inmunología , Esputo/metabolismo , Tráquea/efectos de los fármacos , Tráquea/inmunología , Uridina Difosfato Glucosa/metabolismo , Adulto Joven
16.
BMC Genomics ; 15: 726, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25204199

RESUMEN

BACKGROUND: Defects in airway mucosal defense, including decreased mucus clearance, contribute to the pathogenesis of human chronic obstructive pulmonary diseases. Scnn1b-Tg mice, which exhibit chronic airway surface dehydration from birth, can be used as a model to study the pathogenesis of muco-obstructive lung disease across developmental stages. To identify molecular signatures associated with obstructive lung disease in this model, gene expression analyses were performed on whole lung and purified lung macrophages collected from Scnn1b-Tg and wild-type (WT) littermates at four pathologically relevant time points. Macrophage gene expression at 6 weeks was evaluated in mice from a germ-free environment to understand the contribution of microbes to disease development. RESULTS: Development- and disease-specific shifts in gene expression related to Scnn1b over-expression were revealed in longitudinal analyses. While the total number of transgene-related differentially expressed genes producing robust signals was relatively small in whole lung (n = 84), Gene Set Enrichment Analysis (GSEA) revealed significantly perturbed biological pathways and interactions between normal lung development and disease initiation/progression. Purified lung macrophages from Scnn1b-Tg mice exhibited numerous robust and dynamic gene expression changes. The expression levels of Classically-activated (M1) macrophage signatures were significantly altered at post-natal day (PND) 3 when Scnn1b-Tg mice lung exhibit spontaneous bacterial infections, while alternatively-activated (M2) macrophage signatures were more prominent by PND 42, producing a mixed M1-M2 activation profile. While differentially-regulated, inflammation-related genes were consistently identified in both tissues in Scnn1b-Tg mice, there was little overlap between tissues or across time, highlighting time- and tissue-specific responses. Macrophages purified from adult germ-free Scnn1b-Tg mice exhibited signatures remarkably similar to non-germ-free counterparts, indicating that the late-phase macrophage activation profile was not microbe-dependent. CONCLUSIONS: Whole lung and pulmonary macrophages respond independently and dynamically to local stresses associated with airway mucus stasis. Disease-specific responses interact with normal developmental processes, influencing the final state of disease in this model. The robust signatures observed in Scnn1b-Tg lung macrophages highlight their critical role in disease pathogenesis. These studies emphasize the importance of region-, cell-type-, and time-dependent analyses to fully dissect the natural history of disease and the consequences of disease on normal lung development.


Asunto(s)
Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Animales , Deshidratación , Regulación hacia Abajo , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Estudios Longitudinales , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Moco/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Componente Principal , Regulación hacia Arriba
17.
Am J Physiol Lung Cell Mol Physiol ; 304(7): L469-80, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23377346

RESUMEN

Airway surface hydration depends on the balance between transepithelial Na(+) absorption and Cl(-) secretion. In adult mice, absence of functional cystic fibrosis transmembrane conductance regulator (Cftr) fails to recapitulate human cystic fibrosis (CF) lung disease. In contrast, overexpression of the epithelial Na(+) channel ß subunit in transgenic mice (ßENaC-Tg) produces unregulated Na(+) hyperabsorption and results in CF-like airway surface dehydration, mucus obstruction, inflammation, and increased neonatal mortality. To investigate whether the combination of airway Na(+) hyperabsorption and absent Cftr-mediated Cl(-) secretion resulted in more severe lung pathology, we generated double-mutant ΔF508 CF/ßENaC-Tg mice. Survival of ΔF508 CF/ßENaC-Tg mice was reduced compared with ßENaC-Tg or ΔF508 CF mice. Absence of functional Cftr did not affect endogenous or transgenic ENaC currents but produced reduced basal components of Cl(-) secretion and tracheal cartilaginous defects in both ΔF508 CF and ΔF508 CF/ßENaC-Tg mice. Neonatal ΔF508 CF/ßENaC-Tg mice exhibited higher neutrophilic pulmonary inflammation and club cell (Clara cell) necrosis compared with ßENaC-Tg littermates. Neonatal ΔF508 CF/ßENaC-Tg mice also exhibited spontaneous bacterial infections, but the bacterial burden was similar to that of ßENaC-Tg littermates. Adult ΔF508 CF/ßENaC-Tg mice exhibited pathological changes associated with eosinophilic crystalline pneumonia, a phenotype not observed in age-matched ßENaC-Tg mice. Collectively, these data suggest that the combined abnormalities in Na(+) absorption and Cl(-) secretion produce more severe lung disease than either defect alone. Airway cartilage abnormalities, airway cell necrosis, and exaggerated neutrophil infiltration likely interact with defective mucus clearance caused by ßENaC overexpression and absent CFTR-mediated Cl(-) secretion to produce the increased neonatal mortality observed in ΔF508 CF/ßENaC-Tg mice.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Canales Epiteliales de Sodio/metabolismo , Pulmón/metabolismo , Eosinofilia Pulmonar/metabolismo , Sodio/metabolismo , Absorción/genética , Animales , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Canales Epiteliales de Sodio/genética , Humanos , Transporte Iónico/genética , Pulmón/patología , Ratones , Ratones Transgénicos , Necrosis , Infiltración Neutrófila/genética , Neutrófilos/metabolismo , Neutrófilos/patología , Neumonía/genética , Neumonía/metabolismo , Neumonía/patología , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/patología
18.
Front Mol Biosci ; 10: 1221796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37555015

RESUMEN

Background: Genetic defects in motile cilia cause primary ciliary dyskinesia (PCD), a rare disease with no specific therapeutics. Individuals with PCD often have impaired fertility and laterality defects and universally suffer from upper and lower airway diseases. Chronic rhinosinusitis is a universal feature of PCD, and mucus accumulation and subsequent infections of the sinonasal cavity cause significant morbidity in individuals with PCD. Despite this, there are no approved treatments that specifically target mucus. Objective: The goals of this study were to determine whether computed tomography (CT) imaging could be used to quantify mucus accumulation and whether the use of a mucolytic agent to reduce disulfide cross-links present in mucins would improve the effectiveness of nasal lavage at removing mucus in a murine model of PCD. Methods: Adult mice with a deletion of the axonemal dynein Dnaic1 were imaged using CT scanning to characterize mucus accumulation. The animals were then treated by nasal lavage with saline, with/without the disulfide-reducing agent tris(2-carboxyethyl)phosphine. Post-treatment CT scans were used to quantify improvement in the sinonasal cavity. Results: Mucus accumulation in the nasal cavity was readily quantified by CT. Compared to sham-treated control animals, nasal lavage with/without a mucolytic agent resulted in a significant reduction of accumulated mucus (p < 0.01). Treatment with the mucolytic agent showed a greater reduction of accumulated mucus than treatment with saline alone. Conclusion: The results suggest that inclusion of a mucolytic agent may increase the effectiveness of nasal lavage at reducing mucus burden in PCD.

19.
Sci Transl Med ; 15(699): eabo7728, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285404

RESUMEN

Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of ß and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.


Asunto(s)
COVID-19 , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón/metabolismo , Moco/metabolismo , Hipoxia/metabolismo
20.
Physiol Genomics ; 44(8): 470-84, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22395316

RESUMEN

Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel ß-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ

Asunto(s)
Obstrucción de las Vías Aéreas/genética , Enfermedades Pulmonares Obstructivas/genética , Moco/metabolismo , Obstrucción de las Vías Aéreas/metabolismo , Animales , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Ratones , Ratones Endogámicos , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA