Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(D1): D1220-D1229, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305829

RESUMEN

The Chemical Functional Ontology (ChemFOnt), located at https://www.chemfont.ca, is a hierarchical, OWL-compatible ontology describing the functions and actions of >341 000 biologically important chemicals. These include primary metabolites, secondary metabolites, natural products, food chemicals, synthetic food additives, drugs, herbicides, pesticides and environmental chemicals. ChemFOnt is a FAIR-compliant resource intended to bring the same rigor, standardization and formal structure to the terms and terminology used in biochemistry, food chemistry and environmental chemistry as the gene ontology (GO) has brought to molecular biology. ChemFOnt is available as both a freely accessible, web-enabled database and a downloadable Web Ontology Language (OWL) file. Users may download and deploy ChemFOnt within their own chemical databases or integrate ChemFOnt into their own analytical software to generate machine readable relationships that can be used to make new inferences, enrich their omics data sets or make new, non-obvious connections between chemicals and their direct or indirect effects. The web version of the ChemFOnt database has been designed to be easy to search, browse and navigate. Currently ChemFOnt contains data on 341 627 chemicals, including 515 332 terms or definitions. The functional hierarchy for ChemFOnt consists of four functional 'aspects', 12 functional super-categories and a total of 173 705 functional terms. In addition, each of the chemicals are classified into 4825 structure-based chemical classes. ChemFOnt currently contains 3.9 million protein-chemical relationships and ∼10.3 million chemical-functional relationships. The long-term goal for ChemFOnt is for it to be adopted by databases and software tools used by the general chemistry community as well as the metabolomics, exposomics, metagenomics, genomics and proteomics communities.


Asunto(s)
Bases de Datos de Compuestos Químicos , Programas Informáticos , Bases de Datos Factuales , Ontología de Genes , Genómica , Proteómica
2.
Nucleic Acids Res ; 46(D1): D1074-D1082, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29126136

RESUMEN

DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year's update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.


Asunto(s)
Bases de Datos Farmacéuticas , Interacciones Farmacológicas , Interacciones Alimento-Droga , Metaboloma/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Transcriptoma/efectos de los fármacos , Interfaz Usuario-Computador
3.
Nucleic Acids Res ; 46(D1): D608-D617, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29140435

RESUMEN

The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB's chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC-MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.


Asunto(s)
Bases de Datos Factuales , Metaboloma , Bases de Datos de Compuestos Químicos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Redes y Vías Metabólicas , Metabolómica , Resonancia Magnética Nuclear Biomolecular , Espectrometría de Masas en Tándem , Interfaz Usuario-Computador
4.
J Mass Spectrom ; 56(4): e4589, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32639693

RESUMEN

Metabolomics study of a biological system often involves the analysis of many comparative samples over a period of several days or weeks. This process of long-term sample runs can encounter unexpected instrument drifts such as small leaks in liquid chromatography-mass spectrometry (LC-MS), degradation of column performance, and MS signal intensity change. A robust analytical method should ideally tolerate these instrumental drifts as much as possible. In this work, we report a case study to demonstrate the high tolerance of differential chemical isotope labeling (CIL) LC-MS method for quantitative metabolome analysis. In a study of using a rat model to examine the metabolome changes during rheumatoid arthritis (RA) disease development and treatment, over 468 samples were analyzed over a period of 15 days in three batches. During the sample runs, a small leak in LC was discovered after a batch of analyses was completed. Reanalysis of these samples was not an option as sample amounts were limited. To overcome the problem caused by the small leak, we applied a method of retention time correction to the LC-MS data to align peak pairs from different runs with different degrees of leak, followed by peak ratio calculation and analysis. Herein, we illustrate that using 12 C-/13 C-peak pair intensity values in CIL LC-MS as a measurement of concentration changes in different samples could tolerate the signal drifts, while using the absolute intensity values (ie, 12 C-peak as in conventional LC-MS) was not as reliable. We hope that the case study illustrated and the method of overcoming the small-leak-caused signal drifts can be helpful to others who may encounter this kind of situation in long-term sample runs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA