Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Res Int ; 2014: 819474, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25136626

RESUMEN

In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1) use of crude enzyme extracts from Aspergillus awamori, (2) Aspergillus awamori solid mashes, and (3) commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN) concentration in hydrolysates was 150 and 250 mg L(-1) after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g(-1), respectively. In both cases, the final glucose concentration was around 130-150 g L(-1). In the second method, the resultant FAN and glucose concentrations were 250 mg L(-1) and 150 g L(-1), respectively. In the third method, highest glucose and lowest FAN concentrations of 170-200 g L(-1) and 100 mg L(-1), respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Halomonas/metabolismo , Hidrólisis , Hidroxibutiratos/metabolismo , Medios de Cultivo , Fermentación , Industria de Alimentos , Halomonas/crecimiento & desarrollo , Hidroxibutiratos/química , Microbiología Industrial , Residuos Industriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA