Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 38(39): 8364-8377, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30104344

RESUMEN

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe2+ uptake via S-nitrosylation of divalent metal transporter 1 (DMT1). While DMT1 could be S-nitrosylated by exogenous nitric oxide donors, in human PD brains, endogenously S-nitrosylated DMT1 was detected in postmortem substantia nigra. Patch-clamp electrophysiological recordings and iron uptake assays confirmed increased Mn2+ or Fe2+ uptake through S-nitrosylated DMT1. We identified two major S-nitrosylation sites, C23 and C540, by mass spectrometry, and DMT1 C23A or C540A substitutions abolished nitric oxide (NO)-mediated DMT1 current increase. To evaluate in vivo significance, lipopolysaccharide (LPS) was stereotaxically injected into the substantia nigra of female and male mice to induce inflammation and production of NO. The intranigral LPS injection resulted in corresponding increase in Fe2+ deposition, JNK activation, dopaminergic neuronal loss and deficit in motoric activity, and these were rescued by the NO synthase inhibitor l-NAME or by the DMT1-selective blocker ebselen. Lentiviral knockdown of DMT1 abolished LPS-induced dopaminergic neuron loss.SIGNIFICANCE STATEMENT Neuroinflammation and high cytoplasmic Fe2+ levels have been implicated in the initiation and progression of neurodegenerative diseases. Here, we report the unexpected enhancement of the functional activity of transmembrane divalent metal transporter 1 (DMT1) by S-nitrosylation. We demonstrated that S-nitrosylation increased DMT1-mediated Fe2+ uptake, and two cysteines were identified by mass spectrometry to be the sites for S-nitrosylation and for enhanced iron uptake. One conceptual advance is that while DMT1 activity could be increased by external acidification because the gating of the DMT1 transporter is proton motive, we discovered that DMT1 activity could also be enhanced by S-nitrosylation. Significantly, lipopolysaccharide-induced nitric oxide (NO)-mediated neuronal death in the substantia nigra could be ameliorated by using l-NAME, a NO synthase inhibitor, or by ebselen, a DMT1-selective blocker.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hierro/metabolismo , Locomoción , Óxido Nítrico/química , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Animales , Proteínas de Transporte de Catión/química , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Ratones Transgénicos
2.
J Biol Chem ; 286(38): 33380-9, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21795716

RESUMEN

Parkinson disease (PD), a prevalent neurodegenerative motor disorder, is characterized by the rather selective loss of dopaminergic neurons and the presence of α-synuclein-enriched Lewy body inclusions in the substantia nigra of the midbrain. Although the etiology of PD remains incompletely understood, emerging evidence suggests that dysregulated iron homeostasis may be involved. Notably, nigral dopaminergic neurons are enriched in iron, the uptake of which is facilitated by the divalent metal ion transporter DMT1. To clarify the role of iron in PD, we generated SH-SY5Y cells stably expressing DMT1 either singly or in combination with wild type or mutant α-synuclein. We found that DMT1 overexpression dramatically enhances Fe(2+) uptake, which concomitantly promotes cell death. This Fe(2+)-mediated toxicity is aggravated by the presence of mutant α-synuclein expression, resulting in increased oxidative stress and DNA damage. Curiously, Fe(2+)-mediated cell death does not appear to involve apoptosis. Instead, the phenomenon seems to occur as a result of excessive autophagic activity. Accordingly, pharmacological inhibition of autophagy reverses cell death mediated by Fe(2+) overloading. Taken together, our results suggest a role for iron in PD pathogenesis and provide a mechanism underlying Fe(2+)-mediated cell death.


Asunto(s)
Autofagia/efectos de los fármacos , Hierro/toxicidad , Proteínas Mutantes/toxicidad , Neuronas/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/toxicidad , Apoptosis/efectos de los fármacos , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Citocromos c/metabolismo , Humanos , Hierro/metabolismo , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
3.
Sci Rep ; 7(1): 7271, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28779074

RESUMEN

Although experience-dependent changes in brain inhibitory circuits are thought to play a key role during the "critical period" of brain development, the nature and timing of these changes are poorly understood. We examined the role of sensory experience in sculpting an inhibitory circuit in the primary somatosensory cortex (S1) of mice by using optogenetics to map the connections between parvalbumin (PV) expressing interneurons and layer 2/3 pyramidal cells. Unilateral whisker deprivation decreased the strength and spatial range of inhibitory input provided to pyramidal neurons by PV interneurons in layers 2/3, 4 and 5. By varying the time when sensory input was removed, we determined that the critical period closes around postnatal day 14. This yields the first precise time course of critical period plasticity for an inhibitory circuit.


Asunto(s)
Plasticidad Neuronal , Corteza Somatosensorial/fisiología , Animales , Biomarcadores , Fenómenos Electrofisiológicos , Genes Reporteros , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Optogenética , Parvalbúminas , Técnicas de Placa-Clamp , Células Piramidales/metabolismo
4.
Neurophotonics ; 2(2): 021013, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26158003

RESUMEN

We describe an experimental approach that uses light to both control and detect neuronal activity in mouse barrel cortex slices: blue light patterned by a digital micromirror array system allowed us to photostimulate specific layers and columns, while a red-shifted voltage-sensitive dye was used to map out large-scale circuit activity. We demonstrate that such all-optical mapping can interrogate various circuits in somatosensory cortex by sequentially activating different layers and columns. Further, mapping in slices from whisker-deprived mice demonstrated that chronic sensory deprivation did not significantly alter feedforward inhibition driven by layer 5 pyramidal neurons. Further development of voltage-sensitive optical probes should allow this all-optical mapping approach to become an important and high-throughput tool for mapping circuit interactions in the brain.

5.
Front Neural Circuits ; 7: 160, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24324405

RESUMEN

Here we characterize several new lines of transgenic mice useful for optogenetic analysis of brain circuit function. These mice express optogenetic probes, such as enhanced halorhodopsin or several different versions of channelrhodopsins, behind various neuron-specific promoters. These mice permit photoinhibition or photostimulation both in vitro and in vivo. Our results also reveal the important influence of fluorescent tags on optogenetic probe expression and function in transgenic mice.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Optogenética/métodos , Potenciales de Acción/fisiología , Animales , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología , Rodopsina/genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-20725635

RESUMEN

Currently, there is still no effective therapy for neurodegenerative diseases (NDD) such as Alzheimer's disease (AD) and Parkinson's disease (PD) despite intensive research and on-going clinical trials. Collectively, these diseases account for the bulk of health care burden associated with age-related neurodegenerative disorders. There is therefore an urgent need to further research into the molecular pathogenesis, histological differentiation, and clinical management of NDD. Importantly, there is also an urgency to understand the similarities and differences between these two diseases so as to identify the common or different upstream and downstream signaling pathways. In this review, the role iron play in NDD will be highlighted, as iron is key to a common underlying pathway in the production of oxidative stress. There is increasing evidence to suggest that oxidative stress predisposed cells to undergo damage to DNA, protein and lipid, and as such a common factor involved in the pathogenesis of AD and PD. The challenge then is to minimize elevated and uncontrolled oxidative stress levels while not affecting basal iron metabolism, as iron plays vital roles in sustaining cellular function. However, overload of iron results in increased oxidative stress due to the Fenton reaction. We discuss evidence to suggest that sustained exercise and diet restriction may be ways to slow the rate of neurodegeneration, by perhaps promoting neurogenesis or antioxidant-related pathways. It is also our intention to cover NDD in a broad sense, in the context of basic and clinical sciences to cater for both clinician's and the scientist's needs, and to highlight current research investigating exercise as a therapeutic or preventive measure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA