Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(2): e18071, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38044583

RESUMEN

Oral squamous cell carcinoma (OSCC), which accounts for 90% of all oral cancers, has become a public health crisis worldwide. despite advances in therapeutic interventions, the prognosis remains poor for advanced-stage OSCC. In this study, we investigate the anticancer activity and the mode of action of hellebrigenin in human OSCC. The findings demonstrated that hellebrigenin exerted cytotoxic effects in OSCC cells through cell cycle arrest at the G2/M phase and downregulation of cell cycle-related proteins (cyclins A2, B1 and D3, Cdc2, CDK4 and CDK6). Moreover, hellebrigenin caused activation of PARP and caspase 3, 8 and 9, followed by downregulation of antiapoptotic proteins (Bcl-2 and Bcl-xL) and upregulation of pro-apoptotic proteins (Bax and Bak). The hellebrigenin treatment also increased Fas, DR5, DcR2 and DcR3 expressions in oral cancer cells, indicating the compound causes oral cancer cell apoptosis through both intrinsic and extrinsic pathways. Regarding upstream signalling, hellebrigenin was found to reduce the phosphorylation of ERK, p38, and JNK, indicating that hellebrigenin triggers caspase-mediated apoptosis by downregulating MAPK signalling pathway. Finally, the human apoptosis array findings revealed that hellebrigenin specifically suppressed the expression of XIAP to execute its pro-apoptotic activities. Taken together, the study suggests that hellebrigenin can act as a potent anticancer compound in human OSCC.


Asunto(s)
Bufanólidos , Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal , Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
2.
Environ Toxicol ; 39(4): 2417-2428, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197544

RESUMEN

The prevalence of oral squamous cell carcinoma (OSCC) is increasing worldwide mainly due to poor oral hygiene and unrestricted lifestyle. Advanced-stage OSCC is associated with poor prognosis and a 5-year survival rate of only 30%-50%. The present study was designed to investigate the anticancer effect and mode of action of Glycyrrhiza-derived semilicoisoflavone B (SFB) in 5-fluorourasil (5FU)-resistant human OSCC cell lines. The study findings revealed that SFB significantly reduces OSCC cell viability and colony formation ability by arresting cell cycle at the G2/M and S phases and reducing the expressions of key cell cycle regulators including cyclin A, cyclin B, CDC2, and CDK2. The compound caused a significant induction in the percentage of nuclear condensation and apoptotic cells in OSCC. Regarding pro-apoptotic mode of action, SFB was found to increase Fas-associated death domain and death receptor 5 expressions and reduce decoy receptor 2 expression, indicating involvement of extrinsic pathway. Moreover, SFB was found to increase pro-apoptotic Bim expression and reduce anti-apoptotic Bcl-2 and Bcl-xL expressions, indicating involvement of intrinsic pathway. Moreover, SFB-mediated induction in cleaved caspases 3, 8, and 9 and cleaved poly(ADP-ribose) polymerase confirmed the induction of caspase-mediated apoptotic pathways. Regarding upstream signaling pathway, SFB was found to reduce extracellular signal regulated kinase 1/2 (ERK) phosphorylation to execute its pro-apoptotic activity. The Human Apoptotic Array findings revealed that SFB suppresses claspin expression, which in turn caused reduced phosphorylation of ATR, checkpoint kinase 1 (Chk1), Wee1, and CDC25C, indicating disruption of ATR-Chk1 signaling pathway by SFB. Taken together, these findings indicate that SFB acts as a potent anticancer compound against 5FU-resistant OSCC by modulating mitogen-activated protein kinase (MAPK) and ATR-Chk1 signaling pathways.


Asunto(s)
Carcinoma de Células Escamosas , Flavonoides , Neoplasias de la Boca , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Apoptosis , Transducción de Señal , Fosforilación , Fluorouracilo , Línea Celular Tumoral , Proteínas de la Ataxia Telangiectasia Mutada
3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256171

RESUMEN

Most disease single nucleotide polymorphisms (SNPs) are regulatory and approximately half of heritability is occupied by the top 1% of genes, with the gene-level structure varying with the number of variants associated with the most common alleles. Cancer occurrence and progression are significantly affected by Claspin (CLSPN) gene polymorphism present in the population, which alters the expression, function, and regulation of the gene. CLSPN genotypes are associated with oral cancer, but the literature on this association is limited. As a result, the goal of this study is to investigate the correlation between CLSPN genotypes and oral cancers' development. This study will explore the presence of four CLSPN SNPs including rs12058760, rs16822339, rs535638 and rs7520495 gene polymorphisms, and analyze the expression of these genes in 304 cancer-free controls and 402 oral squamous cell carcinoma (OSCC) cases. Attempts have been made to obtain insight into the role of CLSPN gene polymorphisms in oral cancer through the analysis of this study. We demonstrated that the OSCC risk of individuals with four CLSPN SNPs relative to the wild type did not differ significantly from that of the wild type when the polymorphisms are analyzed according to individual habits. We further studied the mechanism by which CLSPN polymorphisms affect the progression of clinicopathological features in OSCC patients. The results of the degree of cell differentiation showed that compared with patients of rs7520495 SNP carrying the CC genotype, the incidence of poor cell differentiation in patients carrying the CC + GG genotype was higher (AOR: 1.998-fold; 95% CI, 1.127-3.545; p = 0.018). In particular, patients with the G genotype of rs7520495 had increased poor cell differentiation compared with patients with the C genotype (AOR: 4.736-fold; 95% CI, 1.306-17.178; p = 0.018), especially in the drinking group. On the basis of our analysis of the Cancer Genome Atlas dataset, we found that higher CLSPN levels were associated with poorer cell differentiation in oral cancers. In this study, we provide the first evidence showing that CLSPN SNPs contribute to oral cancer. Whether or not rs7520495 can be used as a confirmatory factor in the future is uncertain, but it seems likely that it can be used as an important factor in predicting recurrence, response to treatment and medication toxicity to patients with oral cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Consumo de Bebidas Alcohólicas/genética , Neoplasias de la Boca/genética , Polimorfismo de Nucleótido Simple , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
4.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612772

RESUMEN

Oral cancer ranks fourth among malignancies among Taiwanese men and is the eighth most common cancer among men worldwide in terms of general diagnosis. The purpose of the current study was to investigate how low-density lipoprotein receptor-related protein 1B (LDL receptor related protein 1B; LRP1B) gene polymorphisms affect oral squamous cell carcinoma (OSCC) risk and progression in individuals with diabetes mellitus (DM). Three LRP1B single-nucleotide polymorphisms (SNPs), including rs10496915, rs431809, and rs6742944, were evaluated in 311 OSCC cases and 300 controls. Between the case and control groups, we found no evidence of a significant correlation between the risk of OSCC and any of the three specific SNPs. Nevertheless, in evaluating the clinicopathological criteria, individuals with DM who possess a minimum of one minor allele of rs10496915 (AC + CC; p = 0.046) were significantly associated with tumor size compared with those with homozygous major alleles (AA). Similarly, compared to genotypes homologous for the main allele (GG), rs6742944 genotypes (GA + AA; p = 0.010) were more likely to develop lymph node metastases. The tongue and the rs6742944 genotypes (GA + AA) exhibited higher rates of advanced clinical stages (p = 0.024) and lymph node metastases (p = 0.007) when compared to homozygous alleles (GG). LRP1B genetic polymorphisms appear to be prognostic and diagnostic markers for OSCC and DM, as well as contributing to genetic profiling research for personalized medicine.


Asunto(s)
Carcinoma de Células Escamosas , Diabetes Mellitus , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Masculino , Humanos , Neoplasias de la Boca/genética , Metástasis Linfática , Carcinoma de Células Escamosas/genética , Polimorfismo de Nucleótido Simple , Carcinoma de Células Escamosas de Cabeza y Cuello , Receptores de LDL/genética
5.
J Cell Mol Med ; 27(23): 3796-3804, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37710409

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is one of the most common histological types of head and neck cancer. Epiberberine is a potent antitumour agent for several types of cancer. This study is aimed at investigating the regulatory and molecular mechanism of epiberberine on HNSSC cell metastasis. The results showed that epiberberine inhibited the motility of Ca9-22 and FaDu cell lines at nontoxicity doses. Moreover, the epithelial-mesenchymal transition (EMT)-related proteins, vimentin, snail and slug, were found suppressing after epiberberine treatments. In addition, the JNK signalling cascade and the metalloproteinase 13 (MMP-13) expression were also found downregulated by epiberberine. In conclusion, the present study demonstrates that epiberberine suppresses cell migration and invasion by regulating the JNK pathway and MMP-13. These results suggest that epiberberine could be a potential antimetastatic agent in HNSCC cells.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Carcinoma de Células Escamosas/genética , Sistema de Señalización de MAP Quinasas , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal , Invasividad Neoplásica , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
6.
BMC Cancer ; 23(1): 607, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391706

RESUMEN

BACKGROUND: Single nucleotide polymorphism (SNP) is a genetic variation that occurs when a single nucleotide base in the DNA sequence varies between individuals and is present in at least 1% of the population. Genetic variants in FAM13A are associated with different types of chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and lung cancer. However, there is little literature on the association of FAM13A genotypes with oral cancer. Therefore, this project will explore the correlation between the FAM13A genotype and the formation of oral cancer. METHODS: In this project, we will examine the presence of gene polymorphisms gene polymorphisms of rs1059122, rs3017895, rs3756050, and rs7657817 in the FAM13A gene exon, and combine the expression of these genes to try to clarify the impact of the FAM13A gene polymorphism on oral cancer. First, four loci (rs1059122, rs3017895, rs3756050, and rs7657817) of the FAM13A SNP were genotyped using TaqMan allelic discrimination. RESULTS: By estimating OR and AOR, FAM13A exhibited different genotypic variables in four SNPs that were not statistically significant between controls and patients with oral cancer. The results of the general analysis showed that different distributions of allelic types did not affect clinical stage, tumour size, lymph node invasion, distant metastasis, and pathological differentiation status. However, in the alcohol drinking group specifically, patients with the rs3017895 SNP G genotype had a 3.17-fold (95% CI, 1.102-9.116; p = 0.032) increase in the well differentiated state of cells compared to patients with the A allele. CONCLUSIONS: Our results suggested that the SNP rs3017895 FAM13A could contribute to oral cancer. More sample studies are needed in the future to confirm our results and more functional studies are needed to investigate their relevant roles in the development of oral cancer.


Asunto(s)
Consumo de Bebidas Alcohólicas , Proteínas Activadoras de GTPasa , Neoplasias de la Boca , Humanos , Progresión de la Enfermedad , Genes Reguladores , Proteínas Activadoras de GTPasa/genética , Neoplasias de la Boca/genética , Polimorfismo de Nucleótido Simple , Consumo de Bebidas Alcohólicas/efectos adversos
7.
Environ Toxicol ; 38(12): 2939-2951, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37584500

RESUMEN

Natural killer (NK) cells are gaining popularity in the field of cancer immunotherapy. The present study was designed to investigate the effect of a natural flavonol compound limocitrin in increasing cytotoxicity of a permanent NK leukemia cell line KHYG-1 against an aggressive leukemia cell line K562. The findings revealed that limocitrin increased the expressions of cytolytic molecules perforin, granzymes A and B, and granulysin in KHYG-1 cells by inducing phosphorylation of transcription factor CREB, leading to increased lysis of K562 cells. Mechanistically, limocitrin was found to increase the expressions of t-Bid, cleaved caspase 3, and cleaved PARP to induce K562 cell apoptosis. Moreover, limocitrin reduced the expressions of SET and Ape1 to inhibit DNA repair mechanism, leading to caspase-independent K562 cell death. At the molecular level, limocitrin was found to increase the phosphorylation of ERK, p38, and JNK to increase granzyme B expression in KHYG-1 cells. Taken together, the study indicates that limocitrin increases cytotoxicity of NK cells against a range of cancer cells.


Asunto(s)
Células Asesinas Naturales , Leucemia , Humanos , Células K562 , Perforina/metabolismo , Citotoxicidad Inmunológica
8.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901935

RESUMEN

Oral squamous cell carcinoma (OSCC) is the sixth most common type of cancer worldwide. Despite advancement in treatment, advanced-stage OSCC is associated with poor prognosis and high mortality. The present study aimed to investigate the anticancer activities of semilicoisoflavone B (SFB), which is a natural phenolic compound isolated from Glycyrrhiza species. The results revealed that SFB reduces OSCC cell viability by targeting cell cycle and apoptosis. The compound caused cell cycle arrest at the G2/M phase and downregulated the expressions of cell cycle regulators including cyclin A and cyclin-dependent kinase (CDK) 2, 6, and 4. Moreover, SFB induced apoptosis by activating poly-ADP-ribose polymerase (PARP) and caspases 3, 8, and 9. It increased the expressions of pro-apoptotic proteins Bax and Bak, reduced the expressions of anti-apoptotic proteins Bcl-2 and Bcl-xL, and increased the expressions of the death receptor pathway protein Fas cell surface death receptor (FAS), Fas-associated death domain protein (FADD), and TNFR1-associated death domain protein (TRADD). SFB was found to mediate oral cancer cell apoptosis by increasing reactive oxygen species (ROS) production. The treatment of the cells with N-acetyl cysteine (NAC) caused a reduction in pro-apoptotic potential of SFB. Regarding upstream signaling, SFB reduced the phosphorylation of AKT, ERK1/2, p38, and JNK1/2 and suppressed the activation of Ras, Raf, and MEK. The human apoptosis array conducted in the study identified that SFB downregulated survivin expression to induce oral cancer cell apoptosis. Taken together, the study identifies SFB as a potent anticancer agent that might be used clinically to manage human OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quinasas de Proteína Quinasa Activadas por Mitógenos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas ras/efectos de los fármacos , Proteínas ras/metabolismo , Proteínas Proto-Oncogénicas c-raf/efectos de los fármacos , Proteínas Proto-Oncogénicas c-raf/metabolismo
9.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686036

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) are associated with recurrence, distant metastasis, and poor overall survival. This highlights the need for identifying potential therapeutics with minimal side-effects. The present study was designed to investigate the anticancer effects of picrasidine J, a dimeric ß-carboline-type alkaloid isolated from the southern Asian plant Picrasma quassioides. The results showed that picrasidine J significantly inhibits HNSCC cell motility, migration, and invasion. Specifically, picrasidine J inhibited the EMT process by upregulating E-cadherin and ZO-1 and downregulating beta-catenin and Snail. Moreover, picrasidine J reduced the expression of the serine protease KLK-10. At the signaling level, the compound reduced the phosphorylation of ERK. All these factors collectively facilitated the inhibition of HNSCC metastasis with picrasidine J. Taken together, the study identifies picrasidine J as a potential anticancer compound of plant origin that might be used clinically to prevent the distant metastasis and progression of HNSCC.


Asunto(s)
Alcaloides , Antineoplásicos , Neoplasias de Cabeza y Cuello , Picrasma , Carcinoma de Células Escamosas de Cabeza y Cuello , Alcaloides/farmacología , Carbolinas , Antineoplásicos/farmacología , Polímeros , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
10.
J Cell Mol Med ; 26(23): 5807-5819, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308422

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although cisplatin-based chemotherapy is commonly used in HNSCC, frequent development of cisplatin resistance is a potential cause of poor HNSCC prognosis. In the present study, we investigated the anticancer efficacy of a major paclitaxel metabolite namely 7-Epitaxol in cisplatin-resistant HNSCC. The findings revealed that 7-Epitaxol exerts cytotoxic effects in cisplatin-resistant HNSCC cell lines by inducing cell cycle arrest and intrinsic and extrinsic apoptotic pathways. Specifically, 7-Epitaxol increased Fas, TNF-R1, DR5, DcR3 and DcR2 expressions, reduced Bcl-2 and Bcl-XL (anti-apoptotic proteins) expressions, and increased Bid and Bim L/S (pre-apoptotic proteins) expressions, leading to activation of caspase-mediated cancer cell apoptosis. At the upstream cell signalling level, 7-Epitaxol reduced the phosphorylation of AKT, ERK1/2 and p38 to trigger apoptosis. In vivo results showed that animals treated with 7-Epitaxol show antitumor growth compared to control animals. Taken together, the study demonstrates the potential anticancer efficacy of 7-Epitaxol in inducing apoptosis of cisplatin-resistant HNSCC cells through the suppression of AKT and MAPK signalling pathways.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Apoptosis , Proteínas Reguladoras de la Apoptosis
11.
J Med Internet Res ; 24(1): e33399, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34951863

RESUMEN

BACKGROUND: During the COVID-19 pandemic, personal health records (PHRs) have enabled patients to monitor and manage their medical data without visiting hospitals and, consequently, minimize their infection risk. Taiwan's National Health Insurance Administration (NHIA) launched the My Health Bank (MHB) service, a national PHR system through which insured individuals to access their cross-hospital medical data. Furthermore, in 2019, the NHIA released the MHB software development kit (SDK), which enables development of mobile apps with which insured individuals can retrieve their MHB data. However, the NHIA MHB service has its limitations, and the participation rate among insured individuals is low. OBJECTIVE: We aimed to integrate the MHB SDK with our developed blockchain-enabled PHR mobile app, which enables patients to access, store, and manage their cross-hospital PHR data. We also collected and analyzed the app's log data to examine patients' MHB use during the COVID-19 pandemic. METHODS: We integrated our existing blockchain-enabled mobile app with the MHB SDK to enable NHIA MHB data retrieval. The app utilizes blockchain technology to encrypt the downloaded NHIA MHB data. Existing and new indexes can be synchronized between the app and blockchain nodes, and high security can be achieved for PHR management. Finally, we analyzed the app's access logs to compare patients' activities during high and low COVID-19 infection periods. RESULTS: We successfully integrated the MHB SDK into our mobile app, thereby enabling patients to retrieve their cross-hospital medical data, particularly those related to COVID-19 rapid and polymerase chain reaction testing and vaccination information and progress. We retrospectively collected the app's log data for the period of July 2019 to June 2021. From January 2020, the preliminary results revealed a steady increase in the number of people who applied to create a blockchain account for access to their medical data and the number of app subscribers among patients who visited the outpatient department (OPD) and emergency department (ED). Notably, for patients who visited the OPD and ED, the peak proportions with respect to the use of the app for OPD and ED notes and laboratory test results also increased year by year. The highest proportions were 52.40% for ED notes in June 2021, 88.10% for ED laboratory test reports in May 2021, 34.61% for OPD notes in June 2021, and 41.87% for OPD laboratory test reports in June 2021. These peaks coincided with Taiwan's local COVID-19 outbreak lasting from May to June 2021. CONCLUSIONS: This study developed a blockchain-enabled mobile app, which can periodically retrieve and integrate PHRs from the NHIA MHB's cross-hospital data and the investigated hospital's self-pay medical data. Analysis of users' access logs revealed that the COVID-19 pandemic substantially increased individuals' use of PHRs and their health awareness with respect to COVID-19 prevention.


Asunto(s)
COVID-19 , Registros de Salud Personal , Aplicaciones Móviles , Humanos , Pandemias , Estudios Retrospectivos , SARS-CoV-2 , Taiwán/epidemiología
12.
Environ Toxicol ; 37(6): 1509-1520, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35229981

RESUMEN

Nasopharyngeal carcinoma (NPC) is one of the most aggressive malignant tumors of the head and neck. Xanthohumol (Xn) is a compound extracted in a high concentration from the hard resin of hops (Humulus lupulus L.), the basic raw material of beer. This study investigated the apoptotic effect and anticancer properties of Xn in human NPC cell lines. Our study demonstrated that at the concentration 40 µM, Xn significantly reduced cell viability and promoted cell cycle arrest in the G2/M phase in two cell lines. The results indicated that Xn induced apoptosis in NPC cell lines through annexin V/propidium iodide staining, chromatin condensation, and apoptosis-related pathways. Xn upregulated the expression of apoptosis-related proteins, namely DR5, cleaved RIP, caspase-3, caspase-8, caspase-9, PARP, Bim, and Bak, and it downregulated the expression of Bcl-2. Xn upregulated the c-Jun N-terminal kinase (JNK) in the mitogen-activated protein kinase (MAPK), and the inhibition of JNK clearly resulted in decreasing expression of Xn-activated cleaved caspase-3 and PARP. Our research provides sufficient evidence to confirm that Xn induces the MAPK JNK pathway to promote apoptosis of NPC and is expected to become a safe and acceptable treatment option for human NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Apoptosis , Proteínas Reguladoras de la Apoptosis , Caspasa 3/metabolismo , Línea Celular Tumoral , Flavonoides/farmacología , Humanos , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Carcinoma Nasofaríngeo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Propiofenonas , Transducción de Señal
13.
Environ Toxicol ; 37(3): 627-636, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34894061

RESUMEN

Picrasidine I is a dimeric alkaloid derived from a Southern Asian plant Picrasma quassioides and demonstrated to possess pharmacological activities, such as anti-inflammatory and anti-osteoclastogenic effects. However, its potential anticancer effect remains unclear. In the present study, anticancer activity of picrasidine I was assessed by treating oral squamous cell carcinoma cells with different concentrations of picrasidine I (20, 30, and 40 µM) for 24, 48, and 72 h. The findings revealed that picrasidine I reduced the cell viability in a dose-dependent manner. Picrasidine I exerted its cytotoxic effect through arresting cell cycle at G2/M phase by downregulating cyclin A, cyclin B, CDK4, and CDK6, and inducing apoptosis in oral cancer cells. The induction of apoptosis was evidenced by increasing expression of death receptors, disruption of mitochondrial membrane potential, increased activation of PARP and caspases 3, 8, and 9, enhanced expression of proapoptotic mediators (Bak and Bim L/S), and reduced expression of antiapoptotic mediators (Bcl-2 and Bcl-xL). Moreover, analysis of MAPK signaling pathway revealed that picrasidine I-mediated proapoptotic activities by downregulating JNK phosphorylation. Taken together, the study identifies picrasidine I as a potent anticancer agent that can be used as a therapeutic intervention against oral squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Apoptosis , Carbolinas , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello
14.
Int J Mol Sci ; 23(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35682782

RESUMEN

Nasopharyngeal carcinoma (NPC) has a higher incidence in Taiwan than worldwide. Although it is a radiosensitive malignancy, cancer recurrence is still high in the advanced stages because of its ability to induce lymph node metastasis. Picrasidine I from Picrasma quassioides has been reported as a potential drug for targeting multiple signaling pathways. The present study aimed to explore the role of picrasidine I in the apoptosis of NPC cells. Our results show that picrasidine I induced cytotoxic effects in NPC cells and caused cell cycle arrest in the sub-G1, S, and G2/M phases. Western blot analysis further demonstrated that the modulation of apoptosis through the extrinsic and intrinsic pathways was involved in picrasidine I-induced cell death. Downregulation of the ERK1/2 and Akt signaling pathways was also found in picrasidine I-induced apoptosis. Additionally, the apoptosis array showed that picrasidine I significantly increased heme oxygenase-1 (HO-1) expression, which could act as a critical molecule in picrasidine I-induced apoptosis in NPC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets also revealed that the HMOX1 mRNA level (HO-1) is lower in patients with head and neck squamous carcinoma (HNSCC) and NPC than in patients without cancer. Our study indicated that picrasidine I exerts anticancer effects in NPC by modulating HO-1 via the ERK and Akt signaling pathways.


Asunto(s)
Neoplasias Nasofaríngeas , Proteínas Proto-Oncogénicas c-akt , Apoptosis , Carbolinas , Línea Celular Tumoral , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Recurrencia Local de Neoplasia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
15.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361609

RESUMEN

Natural killer (NK) cell therapy is an emerging tool for cancer immunotherapy. NK cells are isolated from peripheral blood, and their number and activity are limited. Therefore, primary NK cells should be expanded substantially, and their proliferation and cytotoxicity must be enhanced. Shuterin is a phytochemical isolated from Ficus thonningii. In this study, we explored the possible capacity of shuterin to enhance the proliferation and activity of KHYG-1 cells (an NK leukemia cell line). Shuterin enhanced the proliferation of KHYG-1 cells and their cytotoxicity to K562 cells. Moreover, this phytochemical induced the expression of granzyme B by promoting the phosphorylated cyclic adenosine monophosphate response element-binding protein (CREB) and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, the secretion of interferon (IFN)-γ increased with increasing levels of shuterin in KHYG-1 cells and NK cells obtained from adults with head and neck squamous cell carcinoma. Shuterin appeared to induce IFN-γ secretion by increasing the expression of lectin-like transcript 1 and the phosphorylation of proteins involved in the Ras/Raf pathway. Thus, shuterin represents a promising agent for promoting the proliferation and cytotoxicity of NK cells.


Asunto(s)
Leucemia , Proteínas Quinasas Activadas por Mitógenos , Humanos , Granzimas/metabolismo , Interferón gamma/metabolismo , Células K562 , Células Asesinas Naturales/metabolismo , Leucemia/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal
16.
Environ Toxicol ; 36(10): 2013-2024, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34165247

RESUMEN

Nasopharyngeal carcinoma (NPC) is an unnoticeable malignant tumor with a high potential of lymphatic metastasis, and its prevalence is high in Asia. Ionizing radiation is the mainstay of treatment for patients with NPC without metastasis. However, patients with metastatic lesions require advanced treatments such as chemotherapy. The present study investigated the apoptotic effect of luteolin-7-O-glucoside on NPC cells and elucidated its underlying signaling mechanisms. The results revealed that luteolin-7-O-glucoside significantly reduced the proliferation of NPC cell lines (NPC-039 and NPC-BM). Flow cytometry and morphological analysis results demonstrated that luteolin-7-O-glucoside treatment induced S and G2 /M cell cycle arrest, chromatin condensation, and apoptosis. In addition, mitochondrial membrane potential was observed to be depolarized with an increasing concentration of luteolin-7-O-glucoside. Proteins involved in the extrinsic and intrinsic pathways of apoptosis, such as death receptor, caspase-3, caspase-8, caspase-9, and Bcl-2 family proteins (Bax, t-Bid, Bcl-2, and Bcl-xL), were downregulated and upregulated after treatment with luteolin-7-O-glucoside, respectively. Moreover, the addition of a PI3K/AKT inhibitor enhanced the activation of poly-ADP-ribose-polymerase (PARP) and attenuated cell viability, indicating that luteolin-7-O-glucoside induced apoptosis in NPC cells through the AKT signaling pathway. These results indicated that the apoptosis of NPC cells modulated by luteolin-7-O-glucoside may be preceded by mitochondrial depolarization, cell cycle arrest, extrinsic and intrinsic apoptosis pathway activation, and AKT signaling modulation. Thus, luteolin-7-O-glucoside can be a promising anticancer agent against human NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Proteínas Proto-Oncogénicas c-akt , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Flavonas , Glucósidos , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
17.
Environ Toxicol ; 36(9): 1848-1856, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34076342

RESUMEN

Head and neck cancer is associated with poor prognosis because of its highly metastatic nature. For the better management of head and neck cancer patients, it is very important to diagnose the cancer at an early stage, as well as to prevent the rapid spread of cancer either through direct invasion or lymphatic metastasis. In present study, the effect of dehydrocrenatidine, which is a beta-carboline alkaloid found in the medicinal plant Picrasma quassioides, on human head and neck cancer metastasis was investigated. The study results revealed the treatment of FaDu, SCC9, and SCC47 cells with 5, 10, and 20 µM of dehydrocrenatidine significantly decreased the motility, migration, and invasion of head and neck cancer cells. Moreover, the dehydrocrenatidine treatment significantly decreased the expression of MMP-2 and phosphorylation of ERK1/2 and JNK1/2. Additional experiments revealed that the cotreatment of dehydrocrenatidine with either ERK1/2 or JNK1/2 inhibitor caused further reduction in cancer cell motility and migration compared to that in dehydrocrenatidine treatment alone. Moreover, similar trend was observed in case of ERK1/2 and JNK1/2 phosphorylation and MMP-2 expression after the cotreatment. Taken together, the mechanism by which dehydrocrenatidine can decrease the phosphorylation of ERK1/2 and JNK1/2, follow decrease the expression of MMP-2 and inhibits head and neck cancer cells invasion and migration. This present study identifies dehydrocrenatidine as a potent antimetastatic agent that can be used clinically to improve head and neck cancer prognosis.


Asunto(s)
Neoplasias de Cabeza y Cuello , Metaloproteinasa 2 de la Matriz , Carbolinas , Línea Celular Tumoral , Movimiento Celular , Humanos , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Invasividad Neoplásica
18.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921647

RESUMEN

Platyphyllenone is a type of diarylheptanoid that exhibits anti-inflammatory and chemoprotective effects. However, its effect on oral cancer remains unclear. In this study, we investigated whether platyphyllenone can promote apoptosis and autophagy in SCC-9 and SCC-47 cells. We found that it dose-dependently promoted the cleavage of PARP; caspase-3, -8, and -9 protein expression; and also led to cell cycle arrest at the G2/M phase. Platyphyllenone up-regulated LC3-II and p62 protein expression in both SCC-9 and SCC-47 cell lines, implying that it can induce autophagy. Furthermore, the results demonstrated that platyphyllenone significantly decreased p-AKT and increased p-JNK1/2 mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner. The specific inhibitors of p-JNK1/2 also reduced platyphyllenone-induced cleavage of PARP, caspase-3, and caspase -8, LC3-II and p62 protein expression. These findings are the first to demonstrate that platyphyllenone can induce both autophagy and apoptosis in oral cancers, and it is expected to provide a therapeutic option as a chemopreventive agent against oral cancer proliferation.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cetonas/farmacología , Neoplasias de la Boca/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Western Blotting , Caspasa 3 , Caspasa 8/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
19.
Int J Mol Sci ; 22(9)2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-34065077

RESUMEN

Advanced-stage oral cancers with lymph node metastasis are associated with poor prognosis and a high mortality rate. Although recent advancement in cancer treatment has effectively improved the oral cancer prognosis, the majority of therapeutic interventions are highly expensive and are associated with severe sideeffects. In the present study, we studied the efficacy of a diarylheptanoid derivative, platyphyllenone, in modulating the metastatic potential of human oral cancer cells. Specifically, we treated the human oral cancer cells (FaDu, Ca9-22, and HSC3) with different concentrations of platyphyllenone and measured the cell proliferation, migration, and invasion. The study findings revealed that platyphyllenonesignificantly inhibited the motility, migration, and invasion of human oral cancer cells. Mechanistically, platyphyllenone reduced p38 phosphorylation, decreased ß-catenin and Slug, increased E-cadherin expression, and reduced cathepsin L expression, which collectively led to a reduction in cancer cell migration and invasion. Taken together, our study indicates that platyphyllenone exerts significant anti-metastatic effects on oral cancer cells by modulating cathepsin L expression, the MAPK signaling pathway, and the epithelial-mesenchymal transition process.


Asunto(s)
Catepsina L/genética , Diarilheptanoides/farmacología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias de la Boca/etiología , Neoplasias de la Boca/metabolismo , Catepsina L/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Diarilheptanoides/química , Humanos , Neoplasias de la Boca/patología , Metástasis de la Neoplasia
20.
Medicina (Kaunas) ; 57(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673355

RESUMEN

Background and Objectives: Oral squamous cell carcinoma (OSCC) is a malignant disease with a particularly high incidence in Taiwan. Our objective in this study was to elucidate the involvement of sphingolipid transporter 2 (SPNS2) expression and SPNS2 protein expression in the clinicopathological indexes and the clinical outcomes of OSCC patients. Materials and Methods: Immunohistochemistry analysis was performed for SPNS2 protein expression in samples from 264 cases of OSCC. Correlations of SPNS2 expression with clinicopathological variables and patient survival were analyzed. Results: Our results revealed that the cytoplasmic protein expression of SPNS2 in OSCC tissue specimens was lower than in normal tissue specimens. Negative cytoplasmic protein expression of SPNS2 was significantly correlated with T status and stage. Kaplan-Meier survival curve analysis revealed that negative cytoplasmic SPNS2 expression was predictive of poorer overall survival of OSCC patients in stage III/IV. We also determined that low SPNS2 expression was an independent prognostic factor related to overall survival among OSCC patients in stage III/IV from univariate Cox proportional hazard models. Multivariate Cox proportional hazard models revealed that cytoplasmic SPNS2 expression, T status, lymph node metastasis, and histological grade were independent prognostic factors for survival. Conclusions: Overall, this study determined that SPNS2 protein may be a useful prognostic marker for OSCC patients and potential therapeutic target for OSCC treatment.


Asunto(s)
Proteínas de Transporte de Anión , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Biomarcadores de Tumor , Humanos , Pronóstico , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA