Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 12(2): e1004744, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26844769

RESUMEN

MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16)) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.


Asunto(s)
ADN/genética , Regulación de la Expresión Génica/genética , MicroARNs/genética , Algoritmos , Composición de Base/genética , Secuencia de Bases , Sitios de Unión , Biología Computacional , ADN/química , Humanos , Leucemia/genética
2.
Bioinformatics ; 28(17): 2223-30, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22796954

RESUMEN

MOTIVATION: Gene prediction in metagenomic sequences remains a difficult problem. Current sequencing technologies do not achieve sufficient coverage to assemble the individual genomes in a typical sample; consequently, sequencing runs produce a large number of short sequences whose exact origin is unknown. Since these sequences are usually smaller than the average length of a gene, algorithms must make predictions based on very little data. RESULTS: We present MetaProdigal, a metagenomic version of the gene prediction program Prodigal, that can identify genes in short, anonymous coding sequences with a high degree of accuracy. The novel value of the method consists of enhanced translation initiation site identification, ability to identify sequences that use alternate genetic codes and confidence values for each gene call. We compare the results of MetaProdigal with other methods and conclude with a discussion of future improvements. AVAILABILITY: The Prodigal software is freely available under the General Public License from http://code.google.com/p/prodigal/.


Asunto(s)
Metagenómica/métodos , Modelos Genéticos , Iniciación de la Cadena Peptídica Traduccional , Programas Informáticos , Algoritmos , Secuencia de Bases , Simulación por Computador , Mycoplasma/genética , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN/métodos
3.
BMC Bioinformatics ; 11: 119, 2010 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-20211023

RESUMEN

BACKGROUND: The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals. RESULTS: With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives. CONCLUSION: We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional/genética , Programas Informáticos , Algoritmos , Bases de Datos Genéticas , Genoma Bacteriano , Células Procariotas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA