RESUMEN
The 2018 LUCAS (Land Use and Coverage Area frame Survey) Soil Pesticides survey provides a European Union (EU)-scale assessment of 118 pesticide residues in more than 3473 soil sites. This study responds to the policy need to develop risk-based indicators for pesticides in the environment. Two mixture risk indicators are presented for soil based, respectively, on the lowest and the median of available No Observed Effect Concentration (NOECsoil,min and NOECsoil,50) from publicly available toxicity datasets. Two further indicators were developed based on the corresponding equilibrium concentration in the aqueous phase and aquatic toxicity data, which are available as species sensitivity distributions. Pesticides were quantified in 74.5% of the sites. The mixture risk indicator based on the NOECsoil,min exceeds 1 in 14% of the sites and 0.1 in 23%. The insecticides imidacloprid and chlorpyrifos and the fungicide epoxiconazole are the largest contributors to the overall risk. At each site, one or a few substances drive mixture risk. Modes of actions most likely associated with mixture effects include modulation of acetylcholine metabolism (neonicotinoids and organophosphate substances) and sterol biosynthesis inhibition (triazole fungicides). Several pesticides driving the risk have been phased out since 2018. Following LUCAS surveys will determine the effectiveness of substance-specific risk management and the overall progress toward risk reduction targets established by EU and UN policies. Newly generated data and knowledge will stimulate needed future research on pesticides, soil health, and biodiversity protection. Integr Environ Assess Manag 2024;20:1639-1653. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Asunto(s)
Monitoreo del Ambiente , Residuos de Plaguicidas , Contaminantes del Suelo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Medición de Riesgo , Residuos de Plaguicidas/análisis , Suelo/química , Unión EuropeaRESUMEN
One of the major goals of the European Human Biomonitoring Initiative (HBM4EU) was to bridge the gap between science and policy by consulting both policy makers and national scientists and generating evidence of the actual exposure of residents to chemicals and whether that exposure would be suggest a potential health risk. Residents' perspectives on chemical exposure and risk were also investigated. HBM4EU's research was designed to answer specific short-term and long-term policy questions at national and European levels, and for its results to directly support regulatory action on chemicals. A strategy was established to prioritise chemicals for analysis in human matrices, with a total of 18 substances/substance groups chosen to be investigated throughout the five-and a -half-year project. HBM4EU produced new evidence of human exposure levels, developed reference values for exposure, investigated determinants of exposure and derived health-based guidance values for those substances. In addition, HBM4EU promoted the use of human biomonitoring data in chemical risk assessment and developed innovative tools and methods linking chemicals to possible health impacts, such as effect biomarkers. Furthermore, HBM4EU advanced understand of effects from combined exposures and methods to identify emerging chemicals. With the aim of supporting policy implementation, science-to-policy workshops were organised, providing opportunities for joint reflection and dialogue on research results. I, and indicators were developed to assess temporal and spatial patterns in the exposure of European population. A sustainable human biomonitoring monitoring framework, producing comparable quality assured data would allow: the evaluation of time trends; the exploration of spatial trends: the evaluation of the influence of socio-economic conditions on chemical exposure. Therefore, such a framework should be included in the European Chemicals' Strategy for Sustainability and the data would support the Zero Pollution Action Plan.
Asunto(s)
Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Monitoreo del Ambiente/métodos , Monitoreo Biológico , Políticas , BiomarcadoresRESUMEN
Exposure to different chemicals is an inevitable part of our everyday lives. Within HBM4EU, focus group discussions were conducted to gather data on citizens' perceptions of chemical exposure and human biomonitoring. These discussions were hosted in Cyprus, Denmark, Hungary, Israel, Latvia, the Netherlands, and North Macedonia following a protocol developed in the first round of discussions. Results indicate the very high concern of European citizens regarding food safety and the environment. Focus group participants were well aware of potential uptake of chemicals through food consumption (e.g., preservatives, flavor enhancers, coloring agents, pesticides, fertilizers, metals), drinking water, or from polluted air and water. One of the positive aspects identified here, is the high interest of citizens in awareness and education on personal measures to control exposure. The promotion of personal behavioral changes requires active involvement of society (e.g., commuting habits, energy choices, waste disposal, dietary habits). Activities should focus on raising awareness of the general public, implementation of policy measures, and mainstreaming of related topics into the education system. Raising awareness of the general public may promote engagement of citizens, which in turn may empower them to put pressure on politicians to take effective actions. There is also a need for further research which might focus on the impact of country-specific situations and of the COVID-19 pandemic on the exposure of citizens to chemicals.
Asunto(s)
Monitoreo Biológico , COVID-19 , COVID-19/epidemiología , Chipre , Humanos , Pandemias , PercepciónRESUMEN
Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.
RESUMEN
Over the last few decades, citizen awareness and perception of chemical products has been a topic of interest, particularly concerning national and international policy decision makers, expert/scientific platforms, and the European Union itself. To date, few qualitative studies on human biomonitoring have analysed communication materials, made recommendations in terms of biomonitoring surveillance, or asked for feedback in terms of specific biomonitoring methods. This paper provides in-depth insight on citizens' perceptions of knowledge of biomonitoring, impact of chemical exposure on daily life, and claims on how results of research should be used. Four semi-structured focus groups were held in Austria, Portugal, Ireland, and the United Kingdom (UK). The cross-sectional observational qualitative design of this study allows for better understanding of public concern regarding chemicals, application, and use of human biomonitoring. The main findings of this study include citizens' clear articulation on pathways of exposure, the demand on stakeholders for transparent decision-making, and sensitivity in communication of results to the public. Validated and trustful communication is perceived as key to empowering citizens to take action. The results can be used to facilitate decision-making and policy development, and feeds into the awareness needs of similar and future projects in human biomonitoring. Furthermore, it also brings to light ideas and concepts of citizens' in shaping collaborative knowledge between citizens', experts, scientists, and policy makers on equal terms.
Asunto(s)
Monitoreo Biológico , Confianza , Austria , Participación de la Comunidad , Estudios Transversales , Humanos , Irlanda , Portugal , Reino UnidoRESUMEN
BACKGROUND: The emergence of psychoactive designer drugs has significantly increased over the last few years. Customs officials are responsible for the control of products entering the European Union (EU) market. This control applies to chemicals in general, pharmaceutical products and medicines. Numerous products imported from non-EU countries, often declared as 'bath salts' or 'fertilizers', contain new psychoactive substance (NPS). REVIEW: These are not necessarily controlled under international law, but may be subject to monitoring in agreement with EU legislation. This situation imposes substantial challenges, for example, for the maintenance of spectral libraries used for their detection by designated laboratories. The chemical identification of new substances, with the use of powerful instrumentation, and the time needed for detailed analysis and interpretation of the results, demands considerable commitment. The EU Joint Research Centre endeavors to provide scientific support to EU Customs laboratories to facilitate rapid identification and characterisation of seized samples. In addition to analysing known NPS, several new chemical entities have also been identified. Frequently, these belong to NPS classes already notified to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) by the European Early- Warning System (EWS). CONCLUSION: The aim of this paper is to discuss the implementation of workflow mechanisms that are in place in order to facilitate the monitoring, communication and management of analytical data. The rapid dissemination of this information between control authorities strives to help protect EU citizens against the health risks posed by harmful substances.
Asunto(s)
Investigación Biomédica/métodos , Unión Europea , Colaboración Intersectorial , Psicotrópicos/análisis , Investigación Biomédica/tendencias , Humanos , Psicotrópicos/química , Trastornos Relacionados con Sustancias/epidemiología , Trastornos Relacionados con Sustancias/prevención & controlRESUMEN
New psychoactive substances (NPS) are synthesized compounds that are not usually covered by European and/or international laws. With a slight alteration in the chemical structure of existing illegal substances registered in the European Union (EU), these NPS circumvent existing controls and are thus referred to as "legal highs". They are becoming increasingly available and can easily be purchased through both the internet and other means (smart shops). Thus, it is essential that the identification of NPS keeps up with this rapidly evolving market. In this case study, the Belgian Customs authorities apprehended a parcel, originating from China, containing two samples, declared as being "white pigments". For routine identification, the Belgian Customs Laboratory first analysed both samples by gas-chromatography mass-spectrometry and Fourier-Transform Infrared spectroscopy. The information obtained by these techniques is essential and can give an indication of the chemical structure of an unknown substance but not the complete identification of its structure. To bridge this gap, scientific and technical support is ensured by the Joint Research Centre (JRC) to the European Commission Directorate General for Taxation and Customs Unions (DG TAXUD) and the Customs Laboratory European Network (CLEN) through an Administrative Arrangement for fast recognition of NPS and identification of unknown chemicals. The samples were sent to the JRC for a complete characterization using advanced techniques and chemoinformatic tools. The aim of this study was also to encourage the development of a science-based policy driven approach on NPS. These samples were fully characterized and identified as 5F-AMB and PX-3 using (1)H and (13)C nuclear magnetic resonance (NMR), high-resolution tandem mass-spectrometry (HR-MS/MS) and Raman spectroscopy. A chemoinformatic platform was used to manage, unify analytical data from multiple techniques and instruments, and combine it with chemical and structural information.
Asunto(s)
Psicotrópicos/análisis , Detección de Abuso de Sustancias/métodos , Bélgica , Crimen/legislación & jurisprudencia , Toxicología Forense , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de MasasRESUMEN
Omics technologies, such as proteomics or metabolomics, have to date been applied in the field of nanomaterial safety assessment to a limited extent. To address this dearth, we developed an integrated approach combining the two techniques to study the effects of two sizes, 5 and 30 nm, of gold nanoparticles (AuNPs) in Caco-2 cells. We observed differences in cells exposed for 72 h to each size of AuNPs: 61 responsive (up/down-regulated) proteins were identified and 35 metabolites in the cell extract were tentatively annotated. Several altered biological pathways were highlighted by integrating the obtained multi-omics data with bioinformatic tools. This provided a unique set of molecular information on the effects of nanomaterials at cellular level. This information was supported by complementary data obtained by immunochemistry, microscopic analysis, and multiplexed assays. A part from increasing our knowledge on how the cellular processes and pathways are affected by nanomaterials (NMs), these findings could be used to identify specific biomarkers of toxicity or to support the safe-by-design concept in the development of new nanomedicines.