RESUMEN
Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by homozygous or compound heterozygous gain-of-function mutations in MEFV, which encodes pyrin, an inflammasome protein. Heterozygous carrier frequencies for multiple MEFV mutations are high in several Mediterranean populations, suggesting that they confer selective advantage. Among 2,313 Turkish people, we found extended haplotype homozygosity flanking FMF-associated mutations, indicating evolutionarily recent positive selection of FMF-associated mutations. Two pathogenic pyrin variants independently arose >1,800 years ago. Mutant pyrin interacts less avidly with Yersinia pestis virulence factor YopM than with wild-type human pyrin, thereby attenuating YopM-induced interleukin (IL)-1ß suppression. Relative to healthy controls, leukocytes from patients with FMF harboring homozygous or compound heterozygous mutations and from asymptomatic heterozygous carriers released heightened IL-1ß specifically in response to Y. pestis. Y. pestis-infected MefvM680I/M680I FMF knock-in mice exhibited IL-1-dependent increased survival relative to wild-type knock-in mice. Thus, FMF mutations that were positively selected in Mediterranean populations confer heightened resistance to Y. pestis.
Asunto(s)
Resistencia a la Enfermedad/genética , Fiebre Mediterránea Familiar/genética , Peste , Pirina/genética , Selección Genética/genética , Animales , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Resistencia a la Enfermedad/inmunología , Haplotipos , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Peste/inmunología , Peste/metabolismo , Pirina/inmunología , Pirina/metabolismo , Turquía , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo , Yersinia pestisRESUMEN
The Burkholderia cepacia complex contains opportunistic pathogens that cause chronic infections and inflammation in lungs of people with cystic fibrosis. Two closely related species within this complex are Burkholderia cenocepacia and the recently classified Burkholderia orbicola. B. cenocepacia and B. orbicola encode a type VI secretion system and the effector TecA, which is detected by the pyrin/caspase-1 inflammasome, and triggers macrophage inflammatory death. In our earlier study the pyrin inflammasome was dispensable for lung inflammation in mice infected with B. orbicola AU1054, indicating this species activates an alternative pathway of macrophage inflammatory death. Notably, B. cenocepacia J2315 and K56-2 can damage macrophage phagosomes and K56-2 triggers activation of the caspase-11 inflammasome, which detects cytosolic LPS. Here we investigated inflammatory cell death in pyrin-deficient ( Mefv -/- ) mouse macrophages infected with B. cenocepacia J2315 or K56-2 or B. orbicola AU1054 or PC184. Macrophage inflammatory death was measured by cleavage of gasdermin D protein, release of cytokines IL-1α and IL-1ß and plasma membrane rupture. Findings suggest that J2315 and K56-2 are detected by the caspase-11 inflammasome in Mefv -/- macrophages, resulting in IL-1ß release. In contrast, inflammasome activation is not detected in Mefv -/- macrophages infected with AU1054 or PC184. Instead, AU1054 triggers an alternative macrophage inflammatory death pathway that requires TecA and results in plasma membrane rupture and IL-1α release. Amino acid variation between TecA isoforms in B. cenocepacia and B. orbicola may explain how the latter species triggers a non-inflammasome macrophage death pathway.
RESUMEN
Persons with cystic fibrosis (CF), starting in early life, show intestinal microbiome dysbiosis characterized in part by a decreased relative abundance of the genus Bacteroides. Bacteroides is a major producer of the intestinal short chain fatty acid propionate. We demonstrate here that cystic fibrosis transmembrane conductance regulator-defective (CFTR-/-) Caco-2 intestinal epithelial cells are responsive to the anti-inflammatory effects of propionate. Furthermore, Bacteroides isolates inhibit the IL-1ß-induced inflammatory response of CFTR-/- Caco-2 intestinal epithelial cells and do so in a propionate-dependent manner. The introduction of Bacteroides-supplemented stool from infants with cystic fibrosis into the gut of CftrF508del mice results in higher propionate in the stool as well as the reduction in several systemic pro-inflammatory cytokines. Bacteroides supplementation also reduced the fecal relative abundance of Escherichia coli, indicating a potential interaction between these two microbes, consistent with previous clinical studies. For a Bacteroides propionate mutant in the mouse model, pro-inflammatory cytokine KC is higher in the airway and serum compared with the wild-type (WT) strain, with no significant difference in the absolute abundance of these two strains. Taken together, our data indicate the potential multiple roles of Bacteroides-derived propionate in the modulation of systemic and airway inflammation and mediating the intestinal ecology of infants and children with CF. The roles of Bacteroides and the propionate it produces may help explain the observed gut-lung axis in CF and could guide the development of probiotics to mitigate systemic and airway inflammation for persons with CF.IMPORTANCEThe composition of the gut microbiome in persons with CF is correlated with lung health outcomes, a phenomenon referred to as the gut-lung axis. Here, we demonstrate that the intestinal microbe Bacteroides decreases inflammation through the production of the short-chain fatty acid propionate. Supplementing the levels of Bacteroides in an animal model of CF is associated with reduced systemic inflammation and reduction in the relative abundance of the opportunistically pathogenic group Escherichia/Shigella in the gut. Taken together, these data demonstrate a key role for Bacteroides and microbially produced propionate in modulating inflammation, gut microbial ecology, and the gut-lung axis in cystic fibrosis. These data support the role of Bacteroides as a potential probiotic in CF.
Asunto(s)
Fibrosis Quística , Niño , Lactante , Humanos , Ratones , Animales , Fibrosis Quística/complicaciones , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Propionatos , Bacteroides/genética , Células CACO-2 , Inflamación/complicaciones , Modelos Animales de Enfermedad , Disbiosis/complicaciones , Escherichia coliRESUMEN
IMPORTANCE: Pyrin, a unique cytosolic receptor, initiates inflammatory responses against RhoA-inactivating bacterial toxins and effectors like Yersinia's YopE and YopT. Understanding pyrin regulation is crucial due to its association with dysregulated inflammatory responses, including Familial Mediterranean Fever (FMF), linked to pyrin gene mutations. FMF mutations historically acted as a defense mechanism against plague. Negative regulation of pyrin through PKN phosphorylation is well established, with Yersinia using the YopM effector to promote pyrin phosphorylation and counteract its activity. This study highlights the importance of phosphoprotein phosphatase activity in positively regulating pyrin inflammasome assembly in phagocytic cells of humans and mice. Oligomeric murine pyrin has S205 phosphorylated before inflammasome assembly, and this study implicates the dephosphorylation of murine pyrin S205 by two catalytic subunits of PP2A in macrophages. These findings offer insights for investigating the regulation of oligomeric pyrin and the balance of kinase and phosphatase activity in pyrin-associated infectious and autoinflammatory diseases.
Asunto(s)
Inflamasomas , Procesamiento Proteico-Postraduccional , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Pirina/genética , Pirina/metabolismo , Macrófagos/metabolismo , Fosfoproteínas Fosfatasas/genética , MutaciónRESUMEN
Burkholderia cenocepacia is a member of the Burkholderia cepacia complex (Bcc), a group of bacteria with members responsible for causing lung infections in cystic fibrosis (CF) patients. The most severe outcome of Bcc infection in CF patients is cepacia syndrome, a disease characterized by necrotizing pneumonia with bacteremia and sepsis. B. cenocepacia is strongly associated with cepacia syndrome, making it one of the most virulent members of the Bcc. Mechanisms underlying the pathogenesis of B. cenocepacia in lung infections and cepacia syndrome remain to be uncovered. B. cenocepacia is primarily an intracellular pathogen and encodes the type VI secretion system (T6SS) effector TecA, which is translocated into host phagocytes. TecA is a deamidase that inactivates multiple Rho GTPases, including RhoA. Inactivation of RhoA by TecA triggers assembly of the pyrin inflammasome, leading to secretion of proinflammatory cytokines, such as interleukin-1ß, from macrophages. Previous work with the B. cenocepacia clinical isolate J2315 showed that TecA increases immunopathology during acute lung infection in C57BL/6 mice and suggested that this effector acts as a virulence factor by triggering assembly of the pyrin inflammasome. Here, we extend these results using a second B. cenocepacia clinical isolate, AU1054, to demonstrate that TecA exacerbates weight loss and lethality during lung infection in C57BL/6 mice and mice engineered to have a CF genotype. Unexpectedly, pyrin was dispensable for TecA virulence activity in both mouse infection models. Our findings establish that TecA is a B. cenocepacia virulence factor that exacerbates lung inflammation, weight loss, and lethality in mouse infection models. IMPORTANCE B. cenocepacia is often considered the most virulent species in the Bcc because of its close association with cepacia syndrome in addition to its capacity to cause chronic lung infections in CF patients (1). Prior to the current study, virulence factors of B. cenocepacia important for causing lethal disease had not been identified in a CF animal model of lung infection. Results of this study describe a CF mouse model and its use in demonstrating that the T6SS effector TecA of B. cenocepacia exacerbates inflammatory cell recruitment and weight loss and is required for lethality and, thus, acts as a key virulence factor during lung infection. This model will be important in further studies to better understand TecA's role as a virulence factor and in investigating ways to prevent or treat B. cenocepacia infections in CF patients. Additionally, TecA may be the founding member of a family of virulence factors in opportunistic pathogens.
Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Burkholderia/microbiología , Burkholderia cenocepacia/metabolismo , Pulmón/microbiología , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Burkholderia cenocepacia/genética , Fibrosis Quística/microbiología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Sistemas de Secreción Tipo VI/genética , Factores de Virulencia/genéticaRESUMEN
Pyrin is an inflammasome sensor in phagocytes that is activated in response to bacterial toxins and effectors that modify RhoA. Pathogen effector-triggered pyrin activation is analogous to an indirect guard mechanism in plants. Pyrin activation appears to be triggered when RhoA GTPases in a host cell are prevented from binding downstream signaling proteins (transducers). RhoA transducers that control this response include PRK kinases, which negatively regulate pyrin by phosphorylation and binding of 14-3-3 proteins. Microtubules regulate pyrin at different levels and may serve as a platform for inflammasome nucleation. Pyrin increases inflammation in the lung, gut or systemically during infection or intoxication in mouse models and protects against systemic infection by decreasing bacterial loads. Pathogenic Yersinia spp. overcome this protective response using effectors that inhibit the pyrin inflammasome. Gain of function mutations in MEFV, the gene encoding pyrin, cause the autoinflammatory disease Familial Mediterranean Fever. Yersinia pestis may have selected for gain of function MEFV mutations in the human population.