RESUMEN
The primary cilium is required for Sonic hedgehog (Shh) signaling in vertebrates. In contrast to mutants affecting ciliary assembly, mutations in the intraflagellar transport complex A (IFT-A) paradoxically cause increased Shh signaling. We previously showed that the IFT-A complex, in addition to its canonical role in retrograde IFT, binds to the tubby-like protein, Tulp3, and recruits it to cilia. Here, we describe a conserved vertebrate G-protein-coupled receptor, Gpr161, which localizes to primary cilia in a Tulp3/IFT-A-dependent manner. Complete loss of Gpr161 in mouse causes midgestation lethality and increased Shh signaling in the neural tube, phenocopying Tulp3/IFT-A mutants. Constitutive Gpr161 activity increases cAMP levels and represses Shh signaling by determining the processing of Gli3 to its repressor form. Conversely, Shh signaling directs Gpr161 to be internalized from cilia, preventing its activity. Thus, Gpr161 defines a morphogenetic pathway coupling protein kinase A activation to Shh signaling during neural tube development.
Asunto(s)
Cilios/metabolismo , Embrión de Mamíferos/metabolismo , Tubo Neural/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Ratones , Datos de Secuencia Molecular , Filogenia , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/química , Alineación de SecuenciaRESUMEN
Rotaviruses (RVs) are the leading cause of severe gastroenteritis in young children, accounting for half a million deaths annually worldwide. RV encodes non-structural protein 1 (NSP1), a well-characterized interferon (IFN) antagonist, which facilitates virus replication by mediating the degradation of host antiviral factors including IRF3 and ß-TrCP. Here, we utilized six human and animal RV NSP1s as baits and performed tandem-affinity purification coupled with high-resolution mass spectrometry to comprehensively characterize NSP1-host protein interaction network. Multiple Cullin-RING ubiquitin ligase (CRL) complexes were identified. Importantly, inhibition of cullin-3 (Cul3) or RING-box protein 1 (Rbx1), by siRNA silencing or chemical perturbation, significantly impairs strain-specific NSP1-mediated ß-TrCP degradation. Mechanistically, we demonstrate that NSP1 localizes to the Golgi with the host Cul3-Rbx1 CRL complex, which targets ß-TrCP and NSP1 for co-destruction at the proteasome. Our study uncovers a novel mechanism that RV employs to promote ß-TrCP turnover and provides molecular insights into virus-mediated innate immunity inhibition.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Interacciones Huésped-Parásitos/fisiología , Infecciones por Rotavirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Western Blotting , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Inmunoprecipitación , Espectrometría de Masas , Proteómica/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , TransfecciónRESUMEN
Progression through mitosis occurs because cyclin B/Cdc2 activation induces the anaphase promoting complex (APC) to cause cyclin B destruction and mitotic exit. To ensure that cyclin B/Cdc2 does not prematurely activate the APC in early mitosis, there must be a mechanism delaying APC activation. Emi1 is a protein capable of inhibiting the APC in S and G2. We show here that Emi1 is phosphorylated by Cdc2, and on a DSGxxS consensus site, is subsequently recognized by the SCF(betaTrCP/Slimb) ubiquitin ligase and destroyed, thus providing a delay for APC activation. Failure of betaTrCP-dependent Emi1 destruction stabilizes APC substrates and results in mitotic catastrophe including centrosome overduplication, potentially explaining mitotic deficiencies in Drosophila Slimb/betaTrCP mutants. We hypothesize that Emi1 destruction relieves a late prophase checkpoint for APC activation.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Péptido Sintasas/metabolismo , Proteínas de Xenopus , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular , Secuencia de Consenso , Ciclina A/metabolismo , Ciclina B/metabolismo , Proteínas de Drosophila , Activación Enzimática , Proteínas F-Box , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Mitosis/efectos de los fármacos , Modelos Biológicos , Mutación , Nocodazol/farmacología , Oocitos/citología , Oocitos/fisiología , Fosforilación , Proteínas Ligasas SKP Cullina F-box , Porcinos , Factores de Tiempo , Xenopus , Proteínas con Repetición de beta-TransducinaRESUMEN
The PBX1 homeodomain transcription factor is converted by t(1;19) chromosomal translocations in acute leukemia into the chimeric E2A-PBX1 oncoprotein. Fusion with E2A confers potent transcriptional activation and constitutive nuclear localization, bypassing the need for dimerization with protein partners that normally stabilize and regulate import of PBX1 into the nucleus, but the mechanisms underlying its oncogenic activation are incompletely defined. We demonstrate here that E2A-PBX1 self-associates through the PBX1 PBC-B domain of the chimeric protein to form higher-order oligomers in t(1;19) human leukemia cells, and that this property is required for oncogenic activity. Structural and functional studies indicate that self-association facilitates the binding of E2A-PBX1 to DNA. Mutants unable to self-associate are transformation defective, however their oncogenic activity is rescued by the synthetic oligomerization domain of FKBP, which confers conditional transformation properties on E2A-PBX1. In contrast to self-association, PBX1 protein domains that mediate interactions with HOX DNA-binding partners are dispensable. These studies suggest that oligomeric self-association may compensate for the inability of monomeric E2A-PBX1 to stably bind DNA and circumvents protein interactions that otherwise modulate PBX1 stability, nuclear localization, DNA binding, and transcriptional activity. The unique dependence on self-association for E2A-PBX1 oncogenic activity suggests potential approaches for mechanism-based targeted therapies.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis/genética , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Cromosomas Humanos Par 1/química , Cromosomas Humanos Par 19/química , ADN de Neoplasias/metabolismo , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas de Fusión Oncogénica/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Transcripción Genética , Translocación GenéticaRESUMEN
Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCF(betaTrCP) ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, betaTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Anafase , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Polaridad Celular , Activación Enzimática , Proteínas F-Box , Humanos , Mitosis , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/genética , Huso Acromático/metabolismo , Factores de Tiempo , Ubiquitina/metabolismo , Proteínas de Xenopus , Xenopus laevis , Quinasa Tipo Polo 1RESUMEN
Human monogenic obesity syndromes, including Bardet-Biedl syndrome (BBS), implicate neuronal primary cilia in regulation of energy homeostasis. Cilia in hypothalamic neurons have been hypothesized to sense and regulate systemic energy status, but the molecular mechanism of this signaling remains unknown. Here, we report a comprehensive localization screen of 42 G-protein-coupled receptors (GPCR) revealing seven ciliary GPCRs, including the neuropeptide Y (NPY) receptors NPY2R and NPY5R. We show that mice modeling BBS disease or obese tubby mice fail to localize NPY2R to cilia in the hypothalamus and that BBS mutant mice fail to activate c-fos or decrease food intake in response to the NPY2R ligand PYY3-36. We find that cells with ciliary NPY2R show augmented PYY3-36-dependent cAMP signaling. Our data demonstrate that ciliary targeting of NPY receptors is important for controlling energy balance in mammals, revealing a physiologically defined ligand-receptor pathway signaling within neuronal cilia.
Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Neuronas/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal , Animales , Depresores del Apetito/farmacología , Síndrome de Bardet-Biedl/genética , Línea Celular , Células Cultivadas , Cilios/metabolismo , AMP Cíclico/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Humanos , Hipotálamo/citología , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/farmacología , Péptido YY/farmacología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Primary cilium dysfunction affects the development and homeostasis of many organs in Bardet-Biedl syndrome (BBS). We recently showed that seven highly conserved BBS proteins form a stable complex, the BBSome, that functions in membrane trafficking to and inside the primary cilium. We have now discovered a BBSome subunit that we named BBIP10. Similar to other BBSome subunits, BBIP10 localizes to the primary cilium, BBIP10 is present exclusively in ciliated organisms, and depletion of BBIP10 yields characteristic BBS phenotypes in zebrafish. Unexpectedly, BBIP10 is required for cytoplasmic microtubule polymerization and acetylation, two functions not shared with any other BBSome subunits. Strikingly, inhibition of the tubulin deacetylase HDAC6 restores microtubule acetylation in BBIP10-depleted cells, and BBIP10 physically interacts with HDAC6. BBSome-bound BBIP10 may therefore function to couple acetylation of axonemal microtubules and ciliary membrane growth.
Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Cilios/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica , Microtúbulos/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/fisiología , Acetilación , Secuencia de Aminoácidos , Animales , Línea Celular , Citoplasma/metabolismo , Histona Desacetilasa 6 , Histona Desacetilasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Pez CebraRESUMEN
Primary cilium dysfunction underlies the pathogenesis of Bardet-Biedl syndrome (BBS), a genetic disorder whose symptoms include obesity, retinal degeneration, and nephropathy. However, despite the identification of 12 BBS genes, the molecular basis of BBS remains elusive. Here we identify a complex composed of seven highly conserved BBS proteins. This complex, the BBSome, localizes to nonmembranous centriolar satellites in the cytoplasm but also to the membrane of the cilium. Interestingly, the BBSome is required for ciliogenesis but is dispensable for centriolar satellite function. This ciliogenic function is mediated in part by the Rab8 GDP/GTP exchange factor, which localizes to the basal body and contacts the BBSome. Strikingly, Rab8(GTP) enters the primary cilium and promotes extension of the ciliary membrane. Conversely, preventing Rab8(GTP) production blocks ciliation in cells and yields characteristic BBS phenotypes in zebrafish. Our data reveal that BBS may be caused by defects in vesicular transport to the cilium.
Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Transporte Biológico , Cilios/metabolismo , Proteínas de Unión al GTP rab/fisiología , Secuencia de Aminoácidos , Animales , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Humanos , Microtúbulos/metabolismo , Modelos Biológicos , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Pez Cebra , Proteínas de Unión al GTP rab/metabolismoRESUMEN
The anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 controls progression to S phase and mitosis by stabilizing key APC/C ubiquitination substrates, including cyclin A. Examining Emi1 binding proteins, we identified the Evi5 oncogene as a regulator of Emi1 accumulation. Evi5 antagonizes SCF(betaTrCP)-dependent Emi1 ubiquitination and destruction by binding to a site adjacent to Emi1's DSGxxS degron and blocking both degron phosphorylation by Polo-like kinases and subsequent betaTrCP binding. Thus, Evi5 functions as a stabilizing factor maintaining Emi1 levels in S/G2 phase. Evi5 protein accumulates in early G1 following Plk1 destruction and is degraded in a Plk1- and ubiquitin-dependent manner in early mitosis. Ablation of Evi5 induces precocious degradation of Emi1 by the Plk/SCF(betaTrCP) pathway, causing premature APC/C activation; cyclin destruction; cell-cycle arrest; centrosome overduplication; and, finally, mitotic catastrophe. We propose that the balance of Evi5 and Polo-like kinase activities determines the timely accumulation of Emi1 and cyclin, ensuring mitotic fidelity.
Asunto(s)
Anafase/fisiología , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Proteínas Nucleares/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/farmacología , Línea Celular , Proteínas F-Box , Proteínas Activadoras de GTPasa , Células HeLa , Humanos , Interfase , Modelos Biológicos , Proteínas Nucleares/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Técnicas del Sistema de Dos Híbridos , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Xenopus , Quinasa Tipo Polo 1RESUMEN
Unfertilized vertebrate eggs are arrested in metaphase of meiosis II with high cyclin B/Cdc2 activity to prevent parthenogenesis. Until fertilization, exit from metaphase is blocked by an activity called cytostatic factor (CSF), which stabilizes cyclin B by inhibiting the anaphase-promoting complex (APC) ubiquitin ligase. The APC inhibitor early mitotic inhibitor 1 (Emi1) was recently found to be required for maintenance of CSF arrest. We show here that exogenous Emi1 is unstable in CSF-arrested Xenopus eggs and is destroyed by the SCF(betaTrCP) ubiquitin ligase, suggesting that endogenous Emi1, an apparent 44-kDa protein, requires a stabilizing factor. However, anti-Emi1 antibodies crossreact with native Emi2/Erp1/FBXO43, a homolog of Emi1 and conserved APC inhibitor. Emi2 is stable in CSF-arrested eggs, is sufficient to prevent CSF release, and is rapidly degraded in a Polo-like kinase 1-dependent manner in response to calcium-mediated egg activation. These results identify Emi2 as a candidate CSF maintenance protein.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Oocitos/citología , Oocitos/metabolismo , Proteínas Proto-Oncogénicas c-mos/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Anafase/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , Señalización del Calcio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Reacciones Cruzadas , Ciclina B/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/inmunología , Femenino , Técnicas In Vitro , Meiosis/fisiología , Datos de Secuencia Molecular , Oocitos/crecimiento & desarrollo , Xenopus/genética , Xenopus/crecimiento & desarrollo , Proteínas de Xenopus/genética , Proteínas de Xenopus/inmunologíaRESUMEN
The AP2 transcription factor family is a set of developmentally regulated, retinoic acid inducible genes composed of four related factors, AP2alpha, AP2beta, AP2gamma, and AP2delta. AP2 factors orchestrate a variety of cell processes including apoptosis, cell growth, and tissue differentiation during embryogenesis. In studies of primary malignancies, AP2alpha has been shown to function as a tumor suppressor in breast cancer, colon cancer, and malignant melanoma. In cell culture models, overexpression of AP2alpha inhibits cell division and stable colony formation, whereas, a dominant-negative AP2alpha mutant increases invasiveness and tumorigenicity. Here we show that AP2alpha targets the p53 tumor suppressor protein. Studies with chromatin immunoprecipitation demonstrate that AP2alpha is brought to p53 binding sites in p53-regulated promoters. The interaction between AP2alpha and p53 augments p53-mediated transcriptional activation, which results in up-regulation of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). AP2alpha is able to induce G(1) and G(2) cell cycle arrest only in the presence of wild-type p53. Thus, we conclude that the tumor suppressor activity of AP2alpha is mediated through a direct interaction with p53. These results also provide a mechanism to explain patterns of gene expression in cancers where AP2alpha is known to function as a tumor suppressor.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Ciclo Celular/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , Ciclinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Genes Supresores de Tumor , Humanos , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción AP-2 , Transcripción Genética , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Técnicas del Sistema de Dos HíbridosRESUMEN
Eight fatal cases of tick-borne encephalitis with an unusual hemorrhagic syndrome were identified in 1999 in the Novosibirsk Region, Russia. To study these strains, we sequenced cDNA fragments of protein E gene from six archival formalin-fixed brain samples. Phylogenetic analysis showed tick-borne encephalitis variants clustered with a Far Eastern subtype (homology 94.7%) but not with the Siberian subtype (82%).