RESUMEN
Escherichia coli (E. coli) is a promising platform for expression of full-length antibodies owing to its several advantages as a production host (fast growth, well characterized genetics, low manufacturing cost), however, low titers from shake flask (typically <â¯5â¯mg/L) has limited its use for production of research-grade material in antibody discovery programs. In this work, we used global transcriptional machinery engineering (gTME) with high throughput screening to increase the expression of full-length antibodies in E. coli. A library of E. coli mutants carrying mutations in the global sigma factor RpoD were generated and screened using the Bacterial Antibody Display (BAD) method for enhanced expression. RpoD mutants were isolated that resulted in full-length antibody titers of up to 130.7⯱â¯6.6â¯mg/L of shake flask culture with chaperone co-expression. These results could be useful for production of several antibodies quickly in shake flasks for characterization (e.g. antigen binding, biological function) during the early discovery phase.
Asunto(s)
Formación de Anticuerpos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Factor sigma/genética , ARN Polimerasas Dirigidas por ADN/genética , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunoglobulina G/biosíntesis , Mutación/genética , Plásmidos/genética , TranscriptomaRESUMEN
T-cell-dependent bispecific antibodies (TDB) have been a major advancement in the treatment of cancer, allowing for improved targeting and efficacy for large molecule therapeutics. TDBs are comprised of one arm targeting a surface antigen on a cancer cell and another targeting an engaging surface antigen on a cytotoxic T cell. To impart this function, the antibody must be in a bispecific format as opposed to the more conventional bivalent format. Through in vitro and in vivo studies, we sought to determine the impact of changing antibody valency on solid tumor distribution and catabolism. A bivalent anti-HER2 antibody exhibited higher catabolism than its full-length monovalent binding counterpart in vivo by both invasive tissue harvesting and noninvasive single photon emission computed tomography/X-ray computed tomography imaging despite similar systemic exposures for the two molecules. To determine what molecular factors drove in vivo distribution and uptake, we developed a mechanistic model for binding and catabolism of monovalent and bivalent HER2 antibodies in KPL4 cells. This model suggests that observed differences in cellular uptake of monovalent and bivalent antibodies are caused by the change in apparent affinity conferred by avidity as well as differences in internalization and degradation rates of receptor bound antibodies. To our knowledge, this is the first study to directly compare the targeting abilities of monovalent and bivalent full-length antibodies. These findings may inform diverse antibody therapeutic modalities, including T-cell-redirecting therapies and drug delivery strategies relying upon receptor internalization.
Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/farmacocinética , Afinidad de Anticuerpos , Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-2/antagonistas & inhibidores , Linfocitos T Citotóxicos/inmunología , Animales , Anticuerpos Biespecíficos/inmunología , Apoptosis , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Ratones , Ratones SCID , Receptor ErbB-2/inmunología , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: One of the mechanisms by which tumors evade immune surveillance is through shedding of the major histocompatibility complex (MHC) class I chain-related protein A and B (MICA/B) from their cell surface. MICA/B are ligands for the activating receptor NKG2D on NK and CD8 T cells. This shedding reduces cell surface levels of MICA/B and impairs NKG2D recognition. Shed MICA/B can also mask NKG2D receptor and is thought to induce NKG2D internalization, further compromising immune surveillance by NK cells. METHODS: We isolated human primary NK cells from normal donors and tested the suppressive activity of soluble recombinant MICA in vitro. Utilizing a panel of novel anti-MICA antibodies, we further examined the stimulatory activities of anti-MICA antibodies that reversed the suppressive effects of soluble MICA. RESULTS: We show that suppressive effects of soluble MICA (sMICA) on NK cell cytolytic activity was not due to the down-regulation of cell surface NKG2D. In the presence of an α3 domain-specific MICA antibody, which did not obstruct NKG2D binding, sMICA-mediated NK cell suppression was completely reversed. Reversal of NK cell inhibition by sMICA was mediated by immune complex formation that agonized NKG2D signaling. Furthermore, this restorative activity was dependent on antibody Fc effector function as the introduction of Fc mutations to abrogate Fc receptor binding failed to reverse sMICA-mediated NK cell suppression. Furthermore, MICA immune complexes preformed with an α3 domain-specific antibody (containing a wild-type Fc) induced IFN-γ and TNF-α secretion by NK cells in the absence of cancer cells, whereas MICA immune complexes preformed with the Fc effectorless antibody failed to induce IFN-γ and TNF-α secretion. Finally, we demonstrated that MICA immune complexes formed with the α3 domain-specific antibody activates NKG2D on NK cells leading to the release of IFN-γ. CONCLUSIONS: Our results demonstrate that an α3 domain-specific MICA antibody can circumvent sMICA-mediated suppression of NK cell cytolytic activity. Moreover, our data suggest that MICA immune complexes formed with α3-specific antibodies can activate NKG2D receptor and restore NK cell function in a Fc-dependent manner. The clinical utility of α3 domain-specific MICA/B antibodies may hold great promise as a new strategy for cancer immunotherapy.
Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Línea Celular , Humanos , TransfecciónRESUMEN
As an immune evasion strategy, MICA and MICB, the major histocompatibility complex class I homologs, are proteolytically cleaved from the surface of cancer cells leading to impairment of CD8 + T cell- and natural killer cell-mediated immune responses. Antibodies that inhibit MICA/B shedding from tumors have therapeutic potential, but the optimal epitopes are unknown. Therefore, we developed a high-resolution, high-throughput glycosylation-engineered epitope mapping (GEM) method, which utilizes site-specific insertion of N-linked glycans onto the antigen surface to mask local regions. We apply GEM to the discovery of epitopes important for shedding inhibition of MICA/B and validate the epitopes at the residue level by alanine scanning and X-ray crystallography (Protein Data Bank accession numbers 6DDM (1D5 Fab-MICA*008), 6DDR (13A9 Fab-MICA*008), 6DDV (6E1 Fab-MICA*008). Furthermore, we show that potent inhibition of MICA shedding can be achieved by antibodies that bind GEM epitopes adjacent to previously reported cleavage sites, and that these anti-MICA/B antibodies can prevent tumor growth in vivo.
Asunto(s)
Anticuerpos/inmunología , Descubrimiento de Drogas/métodos , Mapeo Epitopo/métodos , Antígenos de Histocompatibilidad Clase I/inmunología , Epítopos/química , Epítopos/inmunología , Glicosilación , Antígenos de Histocompatibilidad Clase I/química , Humanos , Ingeniería de Proteínas/métodosRESUMEN
IgA antibodies have broad potential as a novel therapeutic platform based on their superior receptor-mediated cytotoxic activity, potent neutralization of pathogens, and ability to transcytose across mucosal barriers via polymeric immunoglobulin receptor (pIgR)-mediated transport, compared to traditional IgG-based drugs. However, the transition of IgA into clinical development has been challenged by complex expression and characterization, as well as rapid serum clearance that is thought to be mediated by glycan receptor scavenging of recombinantly produced IgA monomer bearing incompletely sialylated N-linked glycans. Here, we present a comprehensive biochemical, biophysical, and structural characterization of recombinantly produced monomeric, dimeric and polymeric human IgA. We further explore two strategies to overcome the rapid serum clearance of polymeric IgA: removal of all N-linked glycosylation sites creating an aglycosylated polymeric IgA and engineering in FcRn binding with the generation of a polymeric IgG-IgA Fc fusion. While previous reports and the results presented in this study indicate that glycan-mediated clearance plays a major role for monomeric IgA, systemic clearance of polymeric IgA in mice is predominantly controlled by mechanisms other than glycan receptor clearance, such as pIgR-mediated transcytosis. The developed IgA platform now provides the potential to specifically target pIgR expressing tissues, while maintaining low systemic exposure.
Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Proteínas Recombinantes de Fusión/inmunología , Animales , Anticuerpos Monoclonales de Origen Murino/genética , Perros , Femenino , Glicosilación , Semivida , Humanos , Inmunoglobulina A/genética , Inmunoglobulina G/genética , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/genéticaRESUMEN
A primary barrier to the success of T cell-recruiting bispecific antibodies in the treatment of solid tumors is the lack of tumor-specific targets, resulting in on-target off-tumor adverse effects from T cell autoreactivity to target-expressing organs. To overcome this, we developed an anti-HER2/CD3 T cell-dependent bispecific (TDB) antibody that selectively targets HER2-overexpressing tumor cells with high potency, while sparing cells that express low amounts of HER2 found in normal human tissues. Selectivity is based on the avidity of two low-affinity anti-HER2 Fab arms to high target density on HER2-overexpressing cells. The increased selectivity to HER2-overexpressing cells is expected to mitigate the risk of adverse effects and increase the therapeutic index. Results included in this manuscript not only support the clinical development of anti-HER2/CD3 1Fab-immunoglobulin G TDB but also introduce a potentially widely applicable strategy for other T cell-directed therapies. The potential of this discovery has broad applications to further enable consideration of solid tumor targets that were previously limited by on-target, but off-tumor, autoimmunity.
Asunto(s)
Afinidad de Anticuerpos/inmunología , Complejo CD3/inmunología , Citotoxicidad Inmunológica , Receptor ErbB-2/inmunología , Anticuerpos Biespecíficos/inmunología , Línea Celular Tumoral , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Activación de Linfocitos/inmunología , Unión ProteicaRESUMEN
Rapid identification of residues that influence antibody expression and thermostability is often needed to move promising therapeutics into the clinic. To establish a method that can assess small expression differences, we developed a Bacterial Antibody Display (BAD) system that overcomes previous limitations, enabling the use of full-length formats for antibody and antigen in a live cell setting. We designed a unique library of individual framework variants using natural diversity introduced by somatic hypermutation, and screened half-antibodies for increased expression using BAD. We successfully identify variants that dramatically improve expression yields and in vitro thermostability of two therapeutically relevant antibodies in E. coli and mammalian cells. While we study antibody expression, bacterial display can now be expanded to examine the processes of protein folding and translocation. Additionally, our natural library design strategy could be applied during antibody humanization and library design for in vitro display methods to maintain expression and formulation stability.
Asunto(s)
Anticuerpos/genética , Escherichia coli/genética , Ingeniería de Proteínas/métodos , Anticuerpos/metabolismo , Regulación de la Expresión Génica , Variación Genética , Interleucina-13/inmunología , Biblioteca de Péptidos , Estabilidad Proteica , Receptor EphB3 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factor A de Crecimiento Endotelial Vascular/inmunologíaRESUMEN
PURPOSE: To design and select the next generation of ocular therapeutics, we performed a comprehensive ocular and systemic pharmacokinetic (PK) analysis of a variety of antibodies and antibody fragments, including a novel-designed bispecific antibody. METHODS: Molecules were administrated via intravitreal (IVT) or intravenous (IV) injections in rabbits, and antibody concentrations in each tissue were determined by ELISA. A novel mathematical model was developed to quantitate the structure-PK relationship. RESULTS: After IVT injection, differences in vitreal half-life observed across all molecules ranged between 3.2 and 5.2 days. Modification or elimination of the fragment crystallizable (Fc) region reduced serum half-life from 9 days for the IgG to 5 days for the neonatal Fc receptor (FcRn) null mAb, to 3.1 to 3.4 days for the other formats. The F(ab')2 was the optimal format for ocular therapeutics with comparable vitreal half-life to full-length antibodies, but with minimized systemic exposure. Concomitantly, the consistency among mathematical model predictions and observed data validated the model for future PK predictions. In addition, we showed a novel design to develop bispecific antibodies, here with activity targeting multiple angiogenesis pathways. CONCLUSIONS: We demonstrated that protein molecular weight and Fc region do not play a critical role in ocular PK, as they do systemically. Moreover, the mathematical model supports the selection of the "ideal therapeutic" by predicting ocular and systemic PK of any antibody format for any dose regimen. These findings have important implications for the design and selection of ocular therapeutics according to treatment needs, such as maximizing ocular half-life and minimizing systemic exposure.
Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Anticuerpos/inmunología , Diseño de Fármacos , Oftalmopatías/tratamiento farmacológico , Ojo/metabolismo , Animales , Anticuerpos Monoclonales/administración & dosificación , Afinidad de Anticuerpos , Oftalmopatías/inmunología , Oftalmopatías/metabolismo , Inyecciones Intravítreas , Masculino , Unión Proteica , ConejosRESUMEN
The essential Mycobacterium tuberculosis Ser/Thr protein kinase (STPK), PknB, plays a key role in regulating growth and division, but the structural basis of activation has not been defined. Here, we provide biochemical and structural evidence that dimerization through the kinase-domain (KD) N-lobe activates PknB by an allosteric mechanism. Promoting KD pairing using a small-molecule dimerizer stimulates the unphosphorylated kinase, and substitutions that disrupt N-lobe pairing decrease phosphorylation activity in vitro and in vivo. Multiple crystal structures of two monomeric PknB KD mutants in complex with nucleotide reveal diverse inactive conformations that contain large active-site distortions that propagate > 30 Å from the mutation site. These results define flexible, inactive structures of a monomeric bacterial receptor KD and show how "back-to-back" N-lobe dimerization stabilizes the active KD conformation. This general mechanism of bacterial receptor STPK activation affords insights into the regulation of homologous eukaryotic kinases that form structurally similar dimers.
Asunto(s)
Regulación Alostérica/fisiología , Mycobacterium tuberculosis/enzimología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Dominio Catalítico , Activación Enzimática/fisiología , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium tuberculosis/metabolismo , Fosforilación/fisiología , Conformación Proteica , Multimerización de Proteína/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de ProteínaRESUMEN
To define how extracellular signals activate bacterial receptor Ser/Thr protein kinases, we characterized the regulatory functions of a weak dimer interface identified in the Mycobacterium tuberculosis PknB and PknE receptor kinases. Sequence comparisons revealed that the analogous interface is conserved in PknD orthologs from diverse bacterial species. To analyze the roles of dimerization, we constructed M. tuberculosis PknD kinase domain (KD) fusion proteins that formed dimers upon addition of rapamycin. Dimerization of unphosphorylated M. tuberculosis PknD KD fusions stimulated phosphorylation activity. Mutations in the dimer interface reduced this activation, limited autophosphorylation, and altered substrate specificity. In contrast, an inactive catalytic site mutant retained the ability to stimulate the wild-type KD by dimerization. These results support the idea that dimer formation allosterically activates unphosphorylated PknD. The phosphorylated PknD KD was fully active even in the absence of dimerization, suggesting that phosphorylation provides an additional regulatory mechanism. The conservation of analogous dimers in diverse prokaryotic and eukaryotic Ser/Thr protein kinases implies that this mechanism of protein kinase regulation is ancient and broadly distributed.
Asunto(s)
Mycobacterium tuberculosis/enzimología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Catálisis , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Estructura Cuaternaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por SustratoRESUMEN
Many bacterial species express 'eukaryotic-like' Ser/Thr or Tyr protein kinases and phosphatases that are candidate mediators of developmental changes and host/pathogen interactions. The biological functions of these systems are largely unknown. Recent genetic, biochemical and structural studies have begun to establish a framework for understanding the systems for Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis (Mtb). Ser/Thr protein kinases (STPKs) appear to regulate diverse processes including cell division and molecular transport. Proposed protein substrates of the STPKs include putative regulatory proteins, as well as six proteins containing Forkhead-associated domains. Structures of domains of receptor STPKs and all three Mtb Ser/Thr or Tyr phosphatases afford an initial description of the principal modules that mediate bacterial STPK signaling. These studies revealed that universal mechanisms of regulation and substrate recognition govern the functions of prokaryotic and eukaryotic STPKs. Several structures also support novel mechanisms of regulation, including dimerization of STPKs, metal-ion binding to PstP and substrate mimicry in PtpB.