Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615647

RESUMEN

Mango by-products are important sources of bioactive compounds generated by agro-industrial process. During mango processing, 35-60% of the fruit is discarded, in many cases without treatment, generating environmental problems and economic losses. These wastes are constituted by peels and seeds (tegument and kernel). The aim of this review was to describe the extraction, identification, and quantification of bioactive compounds, as well as their potential applications, published in the last ten years. The main bioactive compounds in mango by-products are polyphenols and carotenoids, among others. Polyphenols are known for their high antioxidant and antimicrobial activities. Carotenoids show provitamin A and antioxidant activity. Among the mango by-products, the kernel has been studied more than tegument and peels because of the proportion and composition. The kernel represents 45-85% of the seed. The main bioactive components reported for the kernel are gallic, caffeic, cinnamic, tannic, and chlorogenic acids; methyl and ethyl gallates; mangiferin, rutin, hesperidin, and gallotannins; and penta-O-galloyl-glucoside and rhamnetin-3-[6-2-butenoil-hexoside]. Meanwhile, gallic acid, ferulic acid, and catechin are reported for mango peel. Although most of the reports are at the laboratory level, they include potential applications in the fields of food, active packaging, oil and fat, and pharmaceutics. At the market level, two trends will stimulate the industrial production of bioactive compounds from mango by-products: the increasing demand for industrialized fruit products (that will increase the by-products) and the increase in the consumption of bioactive ingredients.


Asunto(s)
Residuos Industriales , Mangifera , Residuos Industriales/análisis , Extractos Vegetales/farmacología , Frutas/química , Polifenoles , Antioxidantes/farmacología , Carotenoides
2.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571057

RESUMEN

The growing demand for cellulosic pulp presents an opportunity to explore alternatives to this material, focusing on utilizing agro-industrial residues. Mango's tegument is a rich source of cellulose, making it a valuable raw material for manufacturing single-use articles or blends with biopolymers. In this sense, employing conventional alkaline and acid chemical treatments, the mango's tegument was treated to obtain cellulosic pulp. The teguments were subjected to treatment with alkaline solutions (2% and 4% NaOH w/v) at 80 °C for 1 or 2 h or with an acetic acid solution (1:1 or 1:2 CH3COOH:H2O2) at 60-70 °C for 1 or 2 h. After treatment, an evaluation was conducted to assess the yield, color, chemical analysis, and structural, thermal, and morphological properties. The alkali treatments produced cellulosic pulps with a light color with 37-42% yield and reduced hemicellulose content. The acid treatments produced orange-brown cellulosic pulp with 47-48% yield and higher hemicellulose content. The acid pulps were thermally more stable (maximum decomposition at 348-357 °C) than the alkali pulps (maximum decomposition at 316-321 °C). The crystallinity index demonstrated that both treatments increased the crystallinity of the cellulose pulps compared with the untreated tegument. The thermal stability of cellulosic pulp at the processing temperatures of disposable tableware (50-120 °C) revealed that plates, bowls, trays, and cups could be produced. Another potential application is as a component of blends with biopolymers to make straws or rigid food packaging (trays) with reinforced structures.

3.
Polymers (Basel) ; 15(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37765647

RESUMEN

In this work, cellulose nanocrystals (CNCs), bleached cellulose nanofibers (bCNFs), and unbleached cellulose nanofibers (ubCNFs) isolated by acid hydrolysis from Agave tequilana Weber var. Azul bagasse, an agro-waste from the tequila industry, were used as reinforcements in a thermoplastic starch matrix to obtain environmentally friendly materials that can substitute contaminant polymers. A robust characterization of starting materials and biocomposites was carried out. Biocomposite mechanical, thermal, and antibacterial properties were evaluated, as well as color, crystallinity, morphology, rugosity, lateral texture, electrical conductivity, chemical identity, solubility, and water vapor permeability. Pulp fibers and nanocelluloses were analyzed via SEM, TEM, and AFM. The water vapor permeability (WVP) decreased by up to 20.69% with the presence of CNCs. The solubility decreases with the presence of CNFs and CNCs. The addition of CNCs and CNFs increased the tensile strength and Young's modulus and decreased the elongation at break. Biocomposites prepared with ubCNF showed the best tensile mechanical properties due to a better adhesion with the matrix. Images of bCNF-based biocomposites demonstrated that bCNFs are good reinforcing agents as the fibers were dispersed within the starch film and embedded within the matrix. Roughness increased with CNF content and decreased with CNC content. Films with CNCs did not show bacterial growth for Staphylococcus aureus and Escherichia coli. This study offers a new theoretical basis since it demonstrates that different proportions of bleached or unbleached nanofibers and nanocrystals can improve the properties of starch films.

4.
Gels ; 8(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36286128

RESUMEN

In this work, a photo-polymerization route was used to obtain potassium acrylate-co-acrylamide hydrogels with enhanced mechanical properties, well-defined microstructures in the dry state, and unique meso- and macrostructures in the hydrated state. The properties of the hydrogels depended on the concentration of the crosslinking agent. Mechanical properties, swelling capacity, and morphology were analyzed, showing a well-defined transition at a critical concentration of the crosslinker. In terms of morphology, shape-evolving surface patterns appeared at different scales during swelling. These surface structures had a noticeable influence on the mechanical properties. Hydrogels with structures exhibited better mechanical properties compared to unstructured hydrogels. The critical crosslinking concentration reported in this work (using glycerol diacrylate) is a reference point for the future preparation of multistructured acrylic hydrogel with enhanced properties.

5.
Carbohydr Polym ; 201: 9-19, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30241867

RESUMEN

Global environmental pollution issues caused by synthetic materials and the lack of practical utilization of the local industrial lignocellulosic waste, force Mexican researchers to produce new biobased sustainable materials that use industrial waste as a source of components. Herein, we show the preparation and characterization of environmentally friendly starch-based nanocomposites reinforced with cellulose nanofibrils (CNF) extracted from Agave tequilana Weber. Tensile, bending and impact mechanical properties of dried and hydrated nanocomposites were studied. Moreover, the water absorption capacity of the nanocomposites were measured and evaluated. The mechanical properties improved because of the presence of a small amount of CNF (1 wt%). This work demonstrates the importance of the addition of a natural biomodifier in a starch matrix to achieve better mechanical properties. Most importantly, this study highlights that lignocellulosic waste from the tequila industry can have a practical application, which is being a source of natural nanoreinforcements for preparation of all-biobased sustainable materials.

6.
Carbohydr Polym ; 102: 576-83, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24507321

RESUMEN

Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results.


Asunto(s)
Cocos/química , Manihot/química , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA