Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 151(2): 304-19, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063122

RESUMEN

Evolution of minimal DNA tumor virus' genomes has selected for small viral oncoproteins that hijack critical cellular protein interaction networks. The structural basis for the multiple and dominant functions of adenovirus oncoproteins has remained elusive. E4-ORF3 forms a nuclear polymer and simultaneously inactivates p53, PML, TRIM24, and MRE11/RAD50/NBS1 (MRN) tumor suppressors. We identify oligomerization mutants and solve the crystal structure of E4-ORF3. E4-ORF3 forms a dimer with a central ß core, and its structure is unrelated to known polymers or oncogenes. E4-ORF3 dimer units coassemble through reciprocal and nonreciprocal exchanges of their C-terminal tails. This results in linear and branched oligomer chains that further assemble in variable arrangements to form a polymer network that partitions the nuclear volume. E4-ORF3 assembly creates avidity-driven interactions with PML and an emergent MRN binding interface. This reveals an elegant structural solution whereby a small protein forms a multivalent matrix that traps disparate tumor suppressors.


Asunto(s)
Proteínas E4 de Adenovirus/química , Proteínas E4 de Adenovirus/metabolismo , Adenovirus Humanos/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Infecciones por Adenovirus Humanos/virología , Línea Celular , Células Cultivadas , Cristalografía por Rayos X , Humanos , Células Vegetales/virología , Pliegue de Proteína , Nicotiana/virología
2.
Genes Dev ; 30(13): 1529-41, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27401556

RESUMEN

Growth of a complex multicellular organism requires coordinated changes in diverse cell types. These cellular changes generate organs of the correct size, shape, and functionality. In plants, the growth hormone auxin induces stem elongation in response to shade; however, which cell types of the stem perceive the auxin signal and contribute to organ growth is poorly understood. Here, we blocked the transcriptional response to auxin within specific tissues to show that auxin signaling is required in many cell types for correct hypocotyl growth in shade, with a key role for the epidermis. Combining genetic manipulations in Arabidopsis thaliana with transcriptional profiling of the hypocotyl epidermis from Brassica rapa, we show that auxin acts in the epidermis in part by inducing activity of the locally acting, growth-promoting brassinosteroid pathway. Our findings clarify cell-specific auxin function in the hypocotyl and highlight the complexity of cell type interactions within a growing organ.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Epidermis de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Brassica rapa/genética , Brassica rapa/crecimiento & desarrollo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/citología , Hipocótilo/efectos de los fármacos , Hipocótilo/efectos de la radiación , Mutación , Proteínas Nucleares/genética , Epidermis de la Planta/efectos de la radiación , Transducción de Señal , Luz Solar , Factores de Transcripción
3.
Cell ; 133(1): 164-76, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18394996

RESUMEN

Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.


Asunto(s)
Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Triptófano/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Vías Biosintéticas , Oscuridad , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Alineación de Secuencia , Triptófano/biosíntesis , Triptófano-Transaminasa/química , Triptófano-Transaminasa/genética , Triptófano-Transaminasa/metabolismo
5.
Nature ; 464(7287): 423-6, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20190735

RESUMEN

Plants, similarly to animals, form polarized axes during embryogenesis on which cell differentiation and organ patterning programs are orchestrated. During Arabidopsis embryogenesis, establishment of the shoot and root stem cell populations occurs at opposite ends of an apical-basal axis. Recent work has identified the PLETHORA (PLT) genes as master regulators of basal/root fate, whereas the master regulators of apical/shoot fate have remained elusive. Here we show that the PLT1 and PLT2 genes are direct targets of the transcriptional co-repressor TOPLESS (TPL) and that PLT1/2 are necessary for the homeotic conversion of shoots to roots in tpl-1 mutants. Using tpl-1 as a genetic tool, we identify the CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors as master regulators of embryonic apical fate, and show they are sufficient to drive the conversion of the embryonic root pole into a second shoot pole. Furthermore, genetic and misexpression studies show an antagonistic relationship between the PLT and HD-ZIP III genes in specifying the root and shoot poles.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Tipificación del Cuerpo/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Proteínas de Homeodominio , Leucina Zippers , Raíces de Plantas/citología , Raíces de Plantas/embriología , Brotes de la Planta/citología , Brotes de la Planta/embriología , Células Madre/citología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
6.
Nature ; 464(7289): 788-91, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20360743

RESUMEN

Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. On perception of JA-Ile, JAZ proteins are degraded and JA-Ile-dependent gene expression is activated. The molecular mechanisms by which JAZ proteins repress gene expression remain unknown. Here we show that the Arabidopsis JAZ proteins recruit the Groucho/Tup1-type co-repressor TOPLESS (TPL) and TPL-related proteins (TPRs) through a previously uncharacterized adaptor protein, designated Novel Interactor of JAZ (NINJA). NINJA acts as a transcriptional repressor whose activity is mediated by a functional TPL-binding EAR repression motif. Accordingly, both NINJA and TPL proteins function as negative regulators of jasmonate responses. Our results point to TPL proteins as general co-repressors that affect multiple signalling pathways through the interaction with specific adaptor proteins. This new insight reveals how stress-related and growth-related signalling cascades use common molecular mechanisms to regulate gene expression in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Ciclopentanos/antagonistas & inhibidores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Oxilipinas/antagonistas & inhibidores , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Represoras/genética , Técnicas del Sistema de Dos Híbridos
7.
Development ; 139(22): 4180-90, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23034631

RESUMEN

The development and coordination of complex tissues in eukaryotes requires precise spatial control of fate-specifying genes. Although investigations of such control have traditionally focused on mechanisms of transcriptional activation, transcriptional repression has emerged as being equally important in the establishment of gene expression territories. In the angiosperm flower, specification of lateral organ fate relies on the spatial regulation of the ABC floral organ identity genes. Our understanding of how the boundaries of these expression domains are controlled is not complete. Here, we report that the A-class organ identity gene APETALA2 (AP2), which is known to repress the C-class gene AGAMOUS, also regulates the expression borders of the B-class genes APETALA3 and PISTILLATA, and the E-class gene SEPALLATA3. We show that AP2 represses its target genes by physically recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. These results demonstrate that AP2 plays a broad role in flower development by controlling the expression domains of numerous floral organ identity genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Histona Desacetilasas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
8.
Development ; 137(21): 3633-42, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20876650

RESUMEN

The ABC model of flower development explains how three classes of homeotic genes confer identity to the four types of floral organs. In Arabidopsis thaliana, APETALA2 (AP2) and AGAMOUS (AG) represent A- and C-class genes that act in an antagonistic fashion to specify perianth and reproductive organs, respectively. An apparent paradox was the finding that AP2 mRNA is supposedly uniformly distributed throughout young floral primordia. Although miR172 has a role in preventing AP2 protein accumulation, miR172 was reported to disappear from the periphery only several days after AG activation in the center of the flower. Here, we resolve the enigmatic behavior of AP2 and its negative regulator miR172 through careful expression analyses. We find that AP2 mRNA accumulates predominantly in the outer floral whorls, as expected for an A-class homeotic gene. Its pattern overlaps only transiently with that of miR172, which we find to be restricted to the center of young floral primordia from early stages on. MiR172 also accumulates in the shoot meristem upon floral induction, compatible with its known role in regulating AP2-related genes with a role in flowering. Furthermore, we show that AP2 can cause striking organ proliferation defects that are not limited to the center of the floral meristem, where its antagonist AG is required for terminating stem cell proliferation. Moreover, AP2 never expands uniformly into the center of ag mutant flowers, while miR172 is largely unaffected by loss of AG activity. We present a model in which the decision whether stamens or petals develop is based on the balance between AP2 and AG activities, rather than the two being mutually exclusive.


Asunto(s)
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Epistasis Genética/fisiología , Flores/crecimiento & desarrollo , Proteínas de Homeodominio/genética , MicroARNs/genética , Modelos Genéticos , Proteínas Nucleares/genética , Proteína AGAMOUS de Arabidopsis/fisiología , Arabidopsis/embriología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Flores/embriología , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/fisiología , MicroARNs/fisiología , Proteínas Nucleares/fisiología , Organogénesis/genética , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente
9.
Development ; 137(17): 2849-56, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20699296

RESUMEN

Plant axillary meristems are composed of highly organized, self-renewing stem cells that produce indeterminate branches or terminate in differentiated structures, such as the flowers. These opposite fates, dictated by both genetic and environmental factors, determine interspecific differences in the architecture of plants. The Cys(2)-His(2) zinc-finger transcription factor RAMOSA1 (RA1) regulates the fate of most axillary meristems during the early development of maize inflorescences, the tassel and the ear, and has been implicated in the evolution of grass architecture. Mutations in RA1 or any other known members of the ramosa pathway, RAMOSA2 and RAMOSA3, generate highly branched inflorescences. Here, we report a genetic screen for the enhancement of maize inflorescence branching and the discovery of a new regulator of meristem fate: the RAMOSA1 ENHANCER LOCUS2 (REL2) gene. rel2 mutants dramatically increase the formation of long branches in ears of both ra1 and ra2 mutants. REL2 encodes a transcriptional co-repressor similar to the TOPLESS protein of Arabidopsis, which is known to maintain apical-basal polarity during embryogenesis. REL2 is capable of rescuing the embryonic defects of the Arabidopsis topless-1 mutant, suggesting that REL2 also functions as a transcriptional co-repressor throughout development. We show by genetic and molecular analyses that REL2 physically interacts with RA1, indicating that the REL2/RA1 transcriptional repressor complex antagonizes the formation of indeterminate branches during maize inflorescence development. Our results reveal a novel mechanism for the control of meristem fate and the architecture of plants.


Asunto(s)
Genes de Plantas , Zea mays/crecimiento & desarrollo , Zea mays/genética , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Secuencia de Bases , ADN Primasa/genética , Elementos de Facilitación Genéticos , Hibridación Genética , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Microscopía Electrónica de Rastreo , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis , Fenotipo , Proteínas de Plantas/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/genética , Especificidad de la Especie , Factores de Transcripción/genética , Zea mays/ultraestructura , Dedos de Zinc/genética
10.
Nat Commun ; 14(1): 4135, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438334

RESUMEN

MORPHEUS' MOLECULE1 (MOM1) is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we find that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with an artificial zinc finger to an unmethylated FWA promoter leads to establishment of DNA methylation and FWA silencing. This process is blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MICRORCHIDIA 6 (MORC6). We find that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes is impaired in the mom1 mutant. In addition to RdDM sites, we identify a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/genética , ADN , Metilación de ADN , Proteínas de Homeodominio , ARN , Factores de Transcripción/genética , Adenosina Trifosfatasas/genética
11.
Curr Biol ; 15(21): 1899-911, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16271866

RESUMEN

BACKGROUND: Plants produce leaf and flower primordia from a specialized tissue called the shoot apical meristem (SAM). Genetic studies have identified a large number of genes that affect various aspects of primordium development including positioning, growth, and differentiation. So far, however, a detailed understanding of the spatio-temporal sequence of events leading to primordium development has not been established. RESULTS: We use confocal imaging of green fluorescent protein (GFP) reporter genes in living plants to monitor the expression patterns of multiple proteins and genes involved in flower primordial developmental processes. By monitoring the expression and polarity of PINFORMED1 (PIN1), the auxin efflux facilitator, and the expression of the auxin-responsive reporter DR5, we reveal stereotypical PIN1 polarity changes which, together with auxin induction experiments, suggest that cycles of auxin build-up and depletion accompany, and may direct, different stages of primordium development. Imaging of multiple GFP-protein fusions shows that these dynamics also correlate with the specification of primordial boundary domains, organ polarity axes, and the sites of floral meristem initiation. CONCLUSIONS: These results provide new insight into auxin transport dynamics during primordial positioning and suggest a role for auxin transport in influencing primordial cell type.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Modelos Biológicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cartilla de ADN , Flores/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía Confocal
12.
Nat Commun ; 7: 11640, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27291711

RESUMEN

DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN/genética , Meteniltetrahidrofolato Ciclohidrolasa/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Proteínas de Arabidopsis/genética , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Desmetilación del ADN , Epigénesis Genética , Ácido Fólico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Homeostasis/efectos de los fármacos , Lisina/metabolismo , Meteniltetrahidrofolato Ciclohidrolasa/genética , Metionina/farmacología , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Modelos Biológicos , Mutación/genética , Transporte de Proteínas/efectos de los fármacos , S-Adenosilmetionina/metabolismo , Tetrahidrofolatos/farmacología
13.
Science ; 347(6222): 655-9, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25612610

RESUMEN

The root meristem consists of populations of distal and proximal stem cells and an organizing center known as the quiescent center. During embryogenesis, initiation of the root meristem occurs when an asymmetric cell division of the hypophysis forms the distal stem cells and quiescent center. We have identified NO TRANSMITTING TRACT (NTT) and two closely related paralogs as being required for the initiation of the root meristem. All three genes are expressed in the hypophysis, and their expression is dependent on the auxin-signaling pathway. Expression of these genes is necessary for distal stem cell fate within the root meristem, whereas misexpression is sufficient to transform other stem cell populations to a distal stem cell fate in both the embryo and mature roots.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/embriología , Desarrollo de la Planta/genética , Células Madre/fisiología , Factores de Transcripción/fisiología , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/farmacología , Meristema/citología , Mutación , Células Madre/citología , Células Madre/efectos de los fármacos , Factores de Transcripción/genética
14.
Curr Opin Plant Biol ; 12(5): 628-36, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19700365

RESUMEN

To ensure correct patterns of gene expression, eukaryotes use a variety of strategies to repress transcription. The transcriptional regulators mediating this repression can be broadly categorized as either passive or active repressors. While passive repressors rely on mechanisms such as steric hindrance of transcriptional activators to repress gene expression, active repressors display inherent repressive abilities commonly conferred by discrete repression domains. Recent studies have indicated that both categories of regulators function in a variety of plant processes, including hormone signal transduction, developmental pathways, and response to biotic and abiotic stresses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Proteínas Represoras/metabolismo , Transcripción Genética , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico
15.
Science ; 319(5868): 1384-6, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18258861

RESUMEN

The transcriptional response to auxin is critical for root and vascular development during Arabidopsis embryogenesis. Auxin induces the degradation of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors, freeing their binding partners, the AUXIN RESPONSE FACTOR (ARF) proteins, which can activate transcription of auxin response genes. We show that TOPLESS (TPL) can physically interact with IAA12/BODENLOS (IAA12/BDL) through an ETHYLENE RESPONSE FACTOR (ERF)-associated amphiphilic repression (EAR) motif. TPL can repress transcription in vivo and is required for IAA12/BDL repressive activity. In addition, tpl-1 can suppress the patterning defects of the bdl-1 mutant. Direct interaction between TPL and ARF5/MONOPTEROS, which is regulated by IAA12/BDL, results in a loss-of-function arf5/mp phenotype. These observations show that TPL is a transcriptional co-repressor and further our understanding of how auxin regulates transcription during plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Secuencias de Aminoácidos , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Modelos Genéticos , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Plantones/embriología , Plantones/metabolismo , Semillas/embriología , Semillas/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
16.
Science ; 312(5779): 1520-3, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16763149

RESUMEN

The embryos of seed plants develop with an apical shoot pole and a basal root pole. In Arabidopsis, the topless-1 (tpl-1) mutation transforms the shoot pole into a second root pole. Here, we show that TPL resembles known transcriptional corepressors and that tpl-1 acts as a dominant negative mutation for multiple TPL-related proteins. Mutations in the putative coactivator HISTONE ACETYLTRANSFERASE GNAT SUPERFAMILY1 suppress the tpl-1 phenotype. Mutations in HISTONE DEACETYLASE19, a putative corepressor, increase the penetrance of tpl-1 and display similar apical defects. These data point to a transcriptional repression mechanism that prevents root formation in the shoot pole during Arabidopsis embryogenesis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/embriología , Proteínas Represoras/fisiología , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Polaridad Celular , Mapeo Cromosómico , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/fisiología , Mutación , Raíces de Plantas/embriología , Brotes de la Planta/embriología , Proteínas Represoras/genética , Semillas
17.
Development ; 129(12): 2797-806, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12050130

RESUMEN

We describe a novel phenotype in Arabidopsis embryos homozygous for the temperature-sensitive topless-1 mutation. This mutation causes the transformation of the shoot pole into a root. Developing topless embryos fail to express markers for the shoot apical meristem (SHOOT MERISTEMLESS and UNUSUAL FLORAL ORGANS) and the hypocotyl (KNAT1). By contrast, the pattern of expression of root markers is either duplicated (LENNY, J1092) or expanded (SCARECROW). Shifts of developing topless embryos between permissive and restrictive temperatures show that apical fates (cotyledons plus shoot apical meristem) can be transformed to basal fates (root) as late as transition stage. As the apical pole of transition stage embryos shows both morphological and molecular characteristics of shoot development, this demonstrates that the topless 1 mutation is capable of causing structures specified as shoot to be respecified as root. Finally, our experiments fail to show a clear link between auxin signal transduction and topless-1 mutant activity: the development of the apical root in topless mutant individuals is not dependent on the activity of the predicted auxin response factor MONOPTEROS nor is the expression of DR5, a proposed 'auxin maximum reporter', expanded in the apical domain of topless embryos.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Mutación , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Proteínas de Homeodominio/genética , Homocigoto , Ácidos Indolacéticos/genética , Proteínas de Plantas/genética , Semillas/genética , Temperatura , Factores de Transcripción/genética
18.
Development ; 129(20): 4707-17, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12361963

RESUMEN

Gynoecium ontogenesis in Arabidopsis is accomplished by the co-ordinated activity of genes that control patterning and the regional differentiation of tissues, and ultimately results in the formation of a basal ovary, a short style and an apical stigma. A transposon insertion in the STYLISH1 (STY1) gene results in gynoecia with aberrant style morphology, while an insertion mutation in the closely related STYLISH2 (STY2) gene has no visible effect on gynoecium development. However, sty1-1 sty2-1 double mutant plants exhibit an enhanced sty1-1 mutant phenotype and are characterized by a further reduction in the amount of stylar and stigmatic tissues and decreased proliferation of stylar xylem. These data imply that STY1 and STY2 are partially redundant and that both genes promote style and stigma formation and influence vascular development during Arabidopsis gynoecium development. Consistently, STY1 and STY2 are expressed in the apical parts of the developing gynoecium and ectopic expression of either STY1 or STY2 driven by the CaMV 35S promoter is sufficient to transform valve cells into style cells. STY1::GUS and STY2::GUS activity is detected in many other organs as well as the gynoecium, suggesting that STY1 and STY2 may have additional functions. This is supported by the sty1-1 sty2-1 double mutants producing rosette and cauline leaves with a higher degree of serration than wild-type leaves. STY1 and STY2 are members of a small gene family, and encode proteins with a RING finger-like motif. Double mutant analyses indicate that STY1 genetically interacts with SPATULA and possibly also with CRABS CLAW.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/genética , Copas de Floración/crecimiento & desarrollo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas Portadoras/metabolismo , Elementos Transponibles de ADN , Copas de Floración/anatomía & histología , Copas de Floración/citología , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA