Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 32(4): 667-671, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33689295

RESUMEN

We report two cholesterol-modified oligonucleotides for use as internal controls for on-DNA reactions during the pooled stages of a DNA-encoded chemical library (DECL) synthesis. As these cholesterol-tagged oligonucleotides are chromatographically separable from normal DECL intermediates, they can be directly monitored by mass spectrometry to track reaction progression within a complex pool of DNA. We observed similar product conversions for reactions on substrates linked to a standard DECL DNA headpiece, to the cholesterol-modified oligonucleotides, and to the cholesterol-modified oligonucleotides while in the presence of pooled DECL synthetic intermediates-validating their use as a representative control. We also highlight an example from a DECL production in which the use of the cholesterol-modified oligonucleotides provided quality control information that guided synthetic decisions. We conclude that the use of cholesterol-modified oligonucleotides as a regular control will significantly improve the quality of DECL productions.


Asunto(s)
Colesterol/química , Oligonucleótidos/química , Cromatografía Liquida/métodos , Técnicas Químicas Combinatorias , Espectrometría de Masas/métodos
2.
ACS Appl Mater Interfaces ; 7(14): 7542-51, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25801088

RESUMEN

Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.


Asunto(s)
ADN/genética , Metacrilatos/química , Nanocápsulas/química , Nanocápsulas/toxicidad , Nylons/química , Sulfadiazina/química , Transfección/métodos , Cationes , Supervivencia Celular/efectos de los fármacos , Cristalización/métodos , ADN/administración & dosificación , ADN/toxicidad , Células HEK293 , Humanos , Células MCF-7 , Ensayo de Materiales , Nanocápsulas/ultraestructura
3.
Biomaterials ; 48: 45-55, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25701031

RESUMEN

Due to their biodegradable character, polyesters such as polycaprolactone (PCL), poly(D,L-lactide) (PDLLA), and polylactic-co-glycolic acid (PLGA) were widely used as the hydrophobic cores of amphiphilic cationic nanoparticles (NPs) for siRNA delivery. However, fewer researches focused on facilitating siRNA delivery by adjusting the polyester composition of these nanoparticles. Herein, we investigated the contribution of polyester segments in siRNA delivery in vitro by introducing different ratio of DLLA moieties in PCL segments of mPEG-block-PCL-graft-poly(dimethylamino ethyl methacrylate)(PEG-b-PCL-g-PDMAEMA). It was noticed that compared with the other ratios of DLLA moieties, a certain molar ratio (about 70%) of the NPs, named mPEG45-P(CL21-co-DLLA48)-g-(PDMAEMA29)2 (PECLD-70), showed the highest gene knockdown efficiency but poorest cellular uptake ability in vitro. Further research revealed that NPs with various compositions of the polyester cores showed different physicochemical properties including particle size, zeta potential and stiffness, leading to different endocytosis mechanisms thus influencing the cellular uptake efficiency. Subsequently, we observed that the cells treated by PECLD-70 NPs/Cy5 siRNA complexes exhibited more diffuse Cy5 signal distribution than other NPs by confocal laser scanning microscope, which suggested that siRNA delivered by PECLD-70 NPs/Cy5 siRNA complexes possessed of stronger capabilities in escaping from endosome/lysosome, entering the RNA-induced silencing complex (RISC) and cutting the target mRNA efficiently. The different siRNA release profile was dominated by the degradation rate of polyester segments. Therefore, it could be concluded that the adjustment of hydrophobic core of cationic nanoparticles could significantly affect their transfection behavior and appropriate polyester composition should be concerned in designing of analogous siRNA vectors.


Asunto(s)
Metacrilatos/química , Nanopartículas , Nylons/química , ARN Interferente Pequeño/administración & dosificación , Animales , Silenciador del Gen , Células Hep G2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos BALB C
4.
Carbohydr Polym ; 108: 26-33, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24751243

RESUMEN

In this work, a new hydrogel was constructed using poly(ɛ-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethylene glycol)-poly(ɛ-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) tri-block copolymers (PECT) with hyaluronic acid (HA) in order to expand application scopes of PECT hydrogel. The rheological and sol-gel phase transition behaviors were investigated by rheometer and test tube inversion method, and the interior morphologies of hydrogel systems were observed by scanning electron microscope (SEM). With the introduction of HA, certain properties of PECT hydrogel, such as viscosity and morphology, have present trends with regularity. Furthermore, with the participation of HA, the degradation and release of acetylsalicylic acid was slightly affected, however, the drug release mechanism of hydrogel has not been changed. PECT/HA hydrogel is confirmed to be non-toxic through a test to NIH3T3 cells. In conclusion, blending with HA is a feasible and safe method to tune properties of PECT hydrogel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA