Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(27): 18387-18395, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38904843

RESUMEN

Flexible metal-organic materials (FMOMs) with stepped isotherms can offer enhanced working capacity in storage applications such as adsorbed natural gas (ANG) storage. Unfortunately, whereas >1000 FMOMs are known, only a handful exhibit methane uptake of >150 cm3/cm3 at 65 atm and 298 K, conditions relevant to ANG. Here, we report a double-walled 2-fold interpenetrated diamondoid (dia) network, X-dia-6-Ni, [Ni2L4(µ-H2O)]n, comprising a new azo linker ligand, L- (L- = (E)-3-(pyridin-4-yldiazenyl)benzoate) and 8-connected dinuclear molecular building blocks. X-dia-6-Ni exhibited gas (CO2, N2, CH4) and liquid (C8 hydrocarbons)-induced reversible transformations between its activated narrow-pore ß phase and γ, a large-pore phase with ca. 33% increase in unit cell volume. Single-crystal X-ray diffraction (SCXRD) studies of the as-synthesized phase α, ß, and γ revealed that structural transformations were enabled by twisting of the azo moiety and/or deformation of the MBB. Further insight into these transformations was gained from variable temperature powder XRD and in situ variable pressure powder XRD. Low-temperature N2 and CO2 sorption revealed stepped Type F-II isotherms with saturation uptakes of 422 and 401 cm3/g, respectively. X-dia-6-Ni exhibited uptake of 200 cm3/cm3 (65 atm, 298 K) and a high CH4 working capacity of 166 cm3/cm3 (5-65 bar, 298 K, 33 cycles), the third highest value yet reported for an FMOM and the highest value for an FMOM with a Type F-II isotherm.

2.
J Med Chem ; 67(12): 9950-9975, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38865195

RESUMEN

To improve their aqueous solubility characteristics, water-solubilizing groups were added to some antiproliferative, rigidin-inspired 7-deazahypoxanthine frameworks after molecular modeling seemed to indicate that structural modifications on the C7 and/or C8 phenyl groups would be beneficial. To this end, two sets of 7-deazahypoxanthines were synthesized by way of a multicomponent reaction approach. It was subsequently determined that their antiproliferative activity against HeLa cells was retained for those derivatives with a glycol ether at the 4'-position of the C8 aryl ring system, while also significantly improving their solubility behavior. The best of these compounds were the equipotent 6-[4-(2-ethoxyethoxy)benzoyl]-2-(pent-4-yn-1-yl)-5-phenyl-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 33 and 6-[4-(2-ethoxyethoxy)benzoyl]-5-(3-fluorophenyl)-2-(pent-4-yn-1-yl)-1,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one 59. Similarly to the parent 1, the new derivatives were also potent inhibitors of tubulin assembly. In treated HeLa cells, live cell confocal microscopy demonstrated their impact on microtubulin dynamics and spindle morphology, which is the upstream trigger of mitotic delay and cell death.


Asunto(s)
Antineoplásicos , Proliferación Celular , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Modelos Moleculares , Solubilidad , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Benzodiazepinas/química , Benzodiazepinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA