Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978399

RESUMEN

G protein-coupled receptors (GPCRs) are one of the major drug targets. In recent years, computational drug design for GPCRs has mainly focused on static structures obtained through X-ray crystallography, cryogenic electron microscopy (cryo-EM) or in silico modelling as a starting point for virtual screening campaigns. However, GPCRs are highly flexible entities with the ability to adopt different conformational states that elicit different physiological responses. Including this knowledge in the drug discovery pipeline can help to tailor novel conformation-specific drugs with an improved therapeutic profile. In this review, we outline our current knowledge about GPCR dynamics that is relevant for receptor activation, signalling bias and allosteric modulation. Ultimately, we highlight new technological implementations such as time-resolved X-ray crystallography and cryo-EM as well as computational algorithms that can contribute to a more comprehensive understanding of receptor dynamics and its relevance for GPCR functionality.

2.
Comput Struct Biotechnol J ; 23: 1938-1944, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38736696

RESUMEN

Allostery, the presence of functional interactions between distant parts of proteins, is a critical concept in the field of biochemistry and molecular biology, particularly in the context of protein function and regulation. Understanding the principles of allosteric regulation is essential for advancing our knowledge of biology and developing new therapeutic strategies. This paper presents AlloViz, an open-source Python package designed to quantitatively determine, analyse, and visually represent allosteric communication networks on the basis of molecular dynamics (MD) simulation data. The software integrates well-known techniques for understanding allosteric properties simplifying the process of accessing, rationalising, and representing protein allostery and communication routes. It overcomes the inefficiency of having multiple methods with heterogeneous implementations and showcases the advantages of using MD simulations and multiple replicas to obtain statistically sound information on protein dynamics; it also enables the calculation of "consensus-like" scores aggregating methods that consider multiple structural aspects of allosteric networks. We demonstrate the features of AlloViz on two proteins: ß-arrestin 1, a key player for regulating G protein-coupled receptor (GPCR) signalling, and the protein tyrosine phosphatase 1B, an important pharmaceutical target for allosteric inhibitors. The software includes comprehensive documentation and examples, tutorials, and a user-friendly graphical interface.

3.
Br J Pharmacol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209310

RESUMEN

G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, photons, food tastants and odorants, and are renowned drug targets. Advancements in structural biology techniques, including X-ray crystallography and cryo-electron microscopy (cryo-EM), have driven the elucidation of an increasing number of GPCR structures. These structures reveal novel features that shed light on receptor activation, dimerization and oligomerization, dichotomy between orthosteric and allosteric modulation, and the intricate interactions underlying signal transduction, providing insights into diverse ligand-binding modes and signalling pathways. However, a substantial portion of the GPCR repertoire and their activation states remain structurally unexplored. Future efforts should prioritize capturing the full structural diversity of GPCRs across multiple dimensions. To do so, the integration of structural biology with biophysical and computational techniques will be essential. We describe in this review the progress of nuclear magnetic resonance (NMR) to examine GPCR plasticity and conformational dynamics, of atomic force microscopy (AFM) to explore the spatial-temporal dynamics and kinetic aspects of GPCRs, and the recent breakthroughs in artificial intelligence for protein structure prediction to characterize the structures of the entire GPCRome. In summary, the journey through GPCR structural biology provided in this review illustrates how far we have come in decoding these essential proteins architecture and function. Looking ahead, integrating cutting-edge biophysics and computational tools offers a path to navigating the GPCR structural landscape, ultimately advancing GPCR-based applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA