Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biosens Bioelectron ; 230: 115268, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030262

RESUMEN

The COVID-19 pandemic has highlighted the need for innovative approaches to its diagnosis. Here we present CoVradar, a novel and simple colorimetric method that combines nucleic acid analysis with dynamic chemical labeling (DCL) technology and the Spin-Tube device to detect SARS-CoV-2 RNA in saliva samples. The assay includes a fragmentation step to increase the number of RNA templates for analysis, using abasic peptide nucleic acid probes (DGL probes) immobilized to nylon membranes in a specific dot pattern to capture RNA fragments. Duplexes are formed by labeling complementary RNA fragments with biotinylated SMART bases, which act as templates for DCL. Signals are generated by recognizing biotin with streptavidin alkaline phosphatase and incubating with a chromogenic substrate to produce a blue precipitate. CoVradar results are analysed by CoVreader, a smartphone-based image processing system that can display and interpret the blotch pattern. CoVradar and CoVreader provide a unique molecular assay capable of detecting SARS-CoV-2 viral RNA without the need for extraction, preamplification, or pre-labeling steps, offering advantages in terms of time (∼3 h/test), cost (∼€1/test manufacturing cost) and simplicity (does not require large equipment). This solution is also promising for developing assays for other infectious diseases.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Aplicaciones Móviles , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , ARN Viral/genética , ARN Viral/análisis , Pandemias , Técnicas Biosensibles/métodos , Teléfono Inteligente , Técnicas de Amplificación de Ácido Nucleico/métodos
2.
Nanoscale ; 13(6): 3500-3511, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33560282

RESUMEN

In this manuscript, we report the development of a versatile, robust, and stable targeting nanocarrier for active delivery. This nanocarrier is based on bifunctionalized polymeric nanoparticles conjugated to a monoclonal antibody that allows for active targeting of either (i) a fluorophore for tracking or (ii) a drug for monitoring specific cell responses. This nanodevice can efficiently discriminate between cells in coculture based on the expression levels of cell surface receptors. As a proof of concept, we have demonstrated efficient delivery using a broadly established cell surface receptor as the target, the epidermal growth factor receptor (EGFR), which is overexpressed in several types of cancers. Additionally, a second validation of this nanodevice was successfully carried out using another cell surface receptor as the target, the cluster of differentiation 147 (CD147). Our results suggest that this versatile nanocarrier can be expanded to other cell receptors and bioactive cargoes, offering remarkable discrimination efficiency between cells with different expression levels of a specific marker. This work supports the ability of nanoplatforms to boost and improve the progress towards personalized medicine.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Línea Celular Tumoral , Técnicas de Cocultivo , Sistemas de Liberación de Medicamentos , Polímeros
3.
Talanta ; 161: 489-496, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27769437

RESUMEN

Over the last decade, circulating microRNAs have received attention as diagnostic and prognostic biomarkers. In particular, microRNA122 has been demonstrated to be an early and more sensitive indicator of drug-induced liver injury than the widely used biomarkers such as alanine aminotransferase and aspartate aminotransferase. Recently, microRNA122 has been used in vitro to assess the cellular toxicity of new drugs and as a biomarker for the development of a rapid test for drug overdose/liver damage. In this proof-of-concept study, we report a PCR-free and label-free detection method that has a limit of detection (3 standard deviations) of 15 fmoles of microRNA122, by integrating a dynamic chemical approach for "Single Nucleobase Labelling" with a bead-based platform (Luminex®) thereby, in principle, demonstrating the exciting prospect of rapid and accurate profiling of any microRNAs related to diseases and toxicology.


Asunto(s)
MicroARNs/análisis , Biomarcadores , Límite de Detección , Microesferas , Sondas de Ácido Nucleico , Ácidos Nucleicos de Péptidos
4.
Chem Commun (Camb) ; 50(99): 15689-91, 2014 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-25373596

RESUMEN

Highly enantioselective organocatalytic [4+2]-cycloaddition of in situ generated trienamines with 4-nitro-5-styrylisoxazoles as α,ß-unsaturated ester surrogates is presented. The synthetic utility of this strategy is demonstrated by transforming the formed cycloadducts into optically active carboxylates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA