Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Plant ; 176(4): e14477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134461

RESUMEN

In Mediterranean countries, late-sown durum wheat (Triticum turgidum L. subsp. durum) may face waterlogging (WL) at early stages. As mitigation of waterlogging by melatonin (MT) has been poorly explored, we analyzed the effects of exogenous MT foliar application to WL-stressed durum wheat on its ecophysiological performance, growth and biomass production. Late-sown plants of a relatively tolerant cultivar (i.e., Emilio-Lepido) were subjected to two WL durations (i.e., 14 and 35 days of WL; DOW) at tillering, with or without exogenous MT application (i.e., 0 and 100 µM). Prolonged WL reduced shoot biomass (-43%), but the application of MT mitigated this detrimental effect. Waterlogging impaired photosynthesis, reducing leaf CO2 assimilation and chlorophyll content (-61 and - 57%, at 14 and 35 DOW). In control, MT increased the photosynthetic pigments (+48%), whereas it exacerbated the decrease in photosynthesis under both WL conditions (-72%, on average). Conversely, MT reduced WL-induced oxidative damage in both shoots and roots (-25% hydrogen peroxide production), facilitating osmotic adjustments and mitigating oxidative stress. The accumulation of osmotic regulators in MT + WL plants (+140 and + 42%, in shoots and roots at 35 DOW; respectively) and mineral solutes (+140 and + 104%, on average, in shoots and roots at 14 DOW) likely mitigated WL stress, limiting the impact of oxidative stress and promoting biomass accumulation. Our results highlight the potential of MT as a bioactive compound in mitigating the adverse effects of WL on late-sown durum wheat and the importance of the complex interactions between physiological responses and environmental stressors.


Asunto(s)
Melatonina , Fotosíntesis , Triticum , Triticum/fisiología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Fotosíntesis/efectos de los fármacos , Agua/metabolismo , Biomasa , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología , Brotes de la Planta/crecimiento & desarrollo , Región Mediterránea , Estrés Fisiológico
2.
Plant Dis ; 107(4): 1207-1209, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36581620

RESUMEN

Verticillium species are known as plant pathogens responsible for wilt diseases in a large variety of dicotyledon plants and crops in many parts of the world. Here we present the draft genome sequence of Verticillium dahliae Kleb. (strain VdGL16) isolated in Italy from the invasive alien species Ailanthus altissima (Mill.; commonly known as tree-of-heaven) showing Verticillium wilt symptoms. The comparison between the newly sequenced genome with those publicly available revealed candidate genes putatively involved in pathogenicity. The genome represents a new useful source for future research on Verticillium genetics and biology as well as research on novel approaches in the control of A. altissima.


Asunto(s)
Ailanthus , Ascomicetos , Verticillium , Especies Introducidas , Ailanthus/genética , Verticillium/genética , Plantas
3.
Environ Res ; 201: 111581, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34174255

RESUMEN

Ozone (O3)-induced metabolic changes in leaves are relevant and may have several ecological significances. Here, variations in foliar chemistry of two poplar clones (Populus deltoides × maximowiczii, Eridano, and P. × euramericana, I-214) under a chronic O3 treatment (80 ppb, 5 h d-1 for 10 consecutive days) were investigated. The aim was to elucidate if leaf age and/or O3-sensitivity (considering Eridano and I-214 as O3-sensitive and O3-resistant, respectively) can affect suitability of poplar foliage for Chrysomela populi L. (Coleoptera Chrysomelidae), in terms of palatability. Comparing controls, only low amino acid (AA) contents were reported in Eridano [about 3- and 4-fold in mature and young leaves (ML and YL, respectively)], and all the investigated primary metabolites [i.e. water soluble carbohydrates (WSC), proteins (Prot) and AA] were higher in YL than in ML of I-214 (+23, +54 and + 20%, respectively). Ozone increased WSC only in YL of Eridano (+24%, i.e. highest values among samples; O3 effects are always reported comparing O3-treated plants with the related controls). A concomitant decrease of Prot was observed in both ML and YL of Eridano, while only in YL of I-214 (-41, -45 and -51%, respectively). In addition, O3 decreased AA in YL of Eridano and in ML of I-214 (-40 and -14%, respectively). Comparing plants maintained under charcoal-filtered air, total ascorbate (Asc) was lower in Eridano in both ML and YL (around -22%), and abscisic acid (ABA) was similar between clones; furthermore, higher levels of Asc were reported in YL than in ML of Eridano (+19%). Ozone increased Asc and ABA (about 2- and 3-fold, respectively) in both ML and YL of Eridano, as well as ABA in YL of I-214 (about 2-fold). Comparing leaves maintained under charcoal-filtered air, the choice feeding test showed that the 2nd instar larvae preferred YL, and the quantity of YL consumed was 9 and 4-fold higher than ML in Eridano and I-214, respectively. Comparing leaves exposed to O3-treatment, a significant feeding preference for YL disks was also observed, regardless of the clone. The no-choice feeding test showed that larval growth was slightly higher on untreated YL than on untreated ML (+19 and + 10% in Eridano and I-214, respectively). The body mass of larvae fed with O3-treated YL was also significantly higher than that of larvae fed with untreated YL (3- and 2-fold in Eridano and I-214). This study highlights that realistic O3 concentrations can significantly impact the host/insect interactions, a phenomenon dependent on leaf age and O3-sensitivity of the host.


Asunto(s)
Escarabajos , Contaminantes Ambientales , Ozono , Populus , Animales , Insectos
4.
Environ Res ; 201: 111615, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216612

RESUMEN

Mediterranean plants are particularly threatened by the exacerbation of prolonged periods of summer drought and increasing concentrations of ground-level ozone (O3). The aims of the present study were to (i) test if selected markers (i.e., reactive oxygen species, ROS; malondialdehyde, MDA; photosynthetic pigments) are able to discriminate the oxidative pressure due to single and combined stress conditions, and (ii) elucidate the physiochemical adjustments adopted by Phillyrea angustifolia (evergreen woody species representative of the maquis, also known as narrow-leaved mock privet) to perceive and counter to drought and/or O3. Plants were grown from May to October under the combination of two levels of water irrigation [i.e., well-watered (WW) and water-stressed (WS)] and three levels of O3 [i.e., 1.0, 1.5 and 2.0 times the ambient air concentrations, i.e. AA (current O3 scenario), 1.5 × AA and 2.0 × AA (future O3 scenarios), respectively], using a new-generation O3 Free Air Controlled Exposure (FACE) system. Overall, this species appeared relatively sensitive to drought (e.g., net CO2 assimilation rate and stomatal conductance significantly decreased, as well as total chlorophyll and carotenoid contents), and tolerant to O3 (e.g., as confirmed by the absence of visible foliar injury, the unchanged values of total carotenoids, and the detrimental effects on stomatal conductance, total chlorophylls and terpene emission only under elevated O3 concentrations). The combination of both stressors led to harsher oxidative stress. Only when evaluated together (i.e., combining the information provided by the analysis of each stress marker), ROS, MDA and photosynthetic pigments, were suitable stress markers to discriminate the differential oxidative stress induced by drought and increasing O3 concentrations applied singly or in combination: (i) all these stress markers were affected under drought per se; (ii) hydrogen peroxide (H2O2) and MDA increased under O3per se, following the gradient of O3 concentrations (H2O2: about 2- and 4-fold higher; MDA: +22 and + 91%; in 1.5 × AA_WW and 2.0 × AA_WW, respectively); (iii) joining together the ROS it was possible to report harsher effects under 2.0 × AA_WS and 1.5 × AA_WS (both anion superoxide and H2O2 increased) than under 2.0 × AA_WW (only H2O2 increased); and (iv) MDA showed harsher effects under 2.0 × AA_WS than under 1.5 × AA_WS (increased by 49 and 18%, respectively). Plants activated physiological and biochemical adjustments in order to partially avoid (e.g., stomatal closure) and tolerate (e.g., increased terpene emission) the effects of drought when combined with increasing O3 concentrations, suggesting that the water use strategy (isohydric) and the sclerophyllous habit can further increase the plant tolerance to environmental constraints in the Mediterranean area.


Asunto(s)
Sequías , Ozono , Peróxido de Hidrógeno , Ozono/efectos adversos
5.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899403

RESUMEN

High-throughput and large-scale measurements of chlorophyll a fluorescence (ChlF) are of great interest to investigate the photosynthetic performance of plants in the field. Here, we tested the capability to rapidly, precisely, and simultaneously estimate the number of pulse-amplitude-modulation ChlF parameters commonly calculated from both dark- and light-adapted leaves (an operation which usually takes tens of minutes) from the reflectance of hyperspectral data collected on light-adapted leaves of date palm seedlings chronically exposed in a FACE facility to three ozone (O3) concentrations (ambient air, AA; target 1.5 × AA O3, named as moderate O3, MO; target 2 × AA O3, named as elevated O3, EO) for 75 consecutive days. Leaf spectral measurements were paired with reference measurements of ChlF, and predictive spectral models were constructed using partial least squares regression. Most of the ChlF parameters were well predicted by spectroscopic models (average model goodness-of-fit for validation, R2: 0.53-0.82). Furthermore, comparing the full-range spectral profiles (i.e., 400-2400 nm), it was possible to distinguish with high accuracy (81% of success) plants exposed to the different O3 concentrations, especially those exposed to EO from those exposed to MO and AA. This was possible even in the absence of visible foliar injury and using a moderately O3-susceptible species like the date palm. The latter view is confirmed by the few variations of the ChlF parameters, that occurred only under EO. The results of the current study could be applied in several scientific fields, such as precision agriculture and plant phenotyping.


Asunto(s)
Clorofila A/química , Luz , Ozono/toxicidad , Phoeniceae/fisiología , Hojas de la Planta/fisiología , Fluorescencia , Phoeniceae/efectos de los fármacos , Phoeniceae/efectos de la radiación , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de la radiación , Estaciones del Año
6.
BMC Genomics ; 19(1): 872, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514212

RESUMEN

BACKGROUND: Similar to other urban trees, holm oaks (Quercus ilex L.) provide a physiological, ecological and social service in the urban environment, since they remove atmospheric pollution. However, the urban environment has several abiotic factors that negatively influence plant life, which are further exacerbated due to climate change, especially in the Mediterranean area. Among these abiotic factors, increased uptake of Na + and Cl - usually occurs in trees in the urban ecosystem; moreover, an excess of the tropospheric ozone concentration in Mediterranean cities further affects plant growth and survival. Here, we produced and annotated a de novo leaf transcriptome of Q. ilex as well as transcripts over- or under-expressed after a single episode of O3 (80 nl l-1, 5 h), a salt treatment (150 mM for 15 days) or a combination of these treatments, mimicking a situation that plants commonly face, especially in urban environments. RESULTS: Salinity dramatically changed the profile of expressed transcripts, while the short O3 pulse had less effect on the transcript profile. However, the short O3 pulse had a very strong effect in inducing over- or under-expression of some genes in plants coping with soil salinity. Many differentially regulated genes were related to stress sensing and signalling, cell wall remodelling, ROS sensing and scavenging, photosynthesis and to sugar and lipid metabolism. Most differentially expressed transcripts revealed here are in accordance with a previous report on Q. ilex at the physiological and biochemical levels, even though the expression profiles were overall more striking than those found at the biochemical and physiological levels. CONCLUSIONS: We produced for the first time a reference transcriptome for Q. ilex, and performed gene expression analysis for this species when subjected to salt, ozone and a combination of the two. The comparison of gene expression between the combined salt + ozone treatment and salt or ozone alone showed that even though many differentially expressed genes overlap all treatments, combined stress triggered a unique response in terms of gene expression modification. The obtained results represent a useful tool for studies aiming to investigate the effects of environmental stresses in urban-adapted tree species.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ozono/farmacología , Quercus/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Quercus/efectos de los fármacos , Quercus/metabolismo , ARN de Planta/química , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Análisis de Secuencia de ARN
7.
Physiol Plant ; 157(1): 69-84, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26541269

RESUMEN

Despite the huge biodiversity characterizing the Mediterranean environment, environmental constraints, such as high sunlight and high temperatures alongside with dry periods, make plant survival hard. In addition, high irradiance leads to increasing ozone (O3 ) concentrations in ambient air. In this era of global warming, it is necessary to understand the mechanisms that allow native species to tolerate these environmental constraints and how such mechanisms interact. Three Mediterranean oak species (Quercus ilex, Quercus pubescens and Quercus cerris) with different features (drought tolerant, evergreen or deciduous species) were selected to assess their biometrical, physiological and biochemical responses under drought and/or O3 stress (80-100 nl l(-1) of O3 for 5 h day(-1) for 77 consecutive days). Leaf visible injury appeared only under drought stress (alone or combined with O3 ) in all three species. Drought × O3 induced strong reductions in leaf dry weight in Q. pubescens and Q. cerris (-70 and -75%, respectively). Alterations in physiological (i.e. decrease in maximum carboxylation rate) and biochemical parameters (i.e. increase in proline content and build-up of malondialdehyde by-products) occurred in all the three species, although drought represented the major determinant. Quercus ilex and Q. pubescens, which co-occur in dry environments, were more tolerant to drought and drought × O3 . Quercus ilex was the species in which oxidative stress occurred only when drought was applied with O3 . High plasticity at a biochemical level (i.e. proline content) and evergreen habitus are likely on the basis of the higher tolerance of Q. ilex.


Asunto(s)
Aclimatación , Ozono/efectos adversos , Quercus/fisiología , Sequías , Ambiente , Calentamiento Global , Calor , Malondialdehído/metabolismo , Estrés Oxidativo , Hojas de la Planta/fisiología , Especificidad de la Especie
8.
Ecotoxicology ; 25(2): 279-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26573685

RESUMEN

Many chemical and non-chemical strategies have been applied to control weeds in agricultural and industrial areas. Knowledge regarding the effects of these methods on roadside vegetation is still poor. A 2-year field experiment was performed along a road located near Livorno (Tuscany, central Italy). Eight plots/strips were identified, of which four were subjected to periodical mechanical mowing and the remaining four were treated with a chemical herbicide based on glyphosate (the producer's recommended rates were used for the selective control of broad-leaved weeds). Our results clearly showed that roadside soil and vegetation are a significant reservoir of anthropogenic activities which have a strong negative effect on several phytosociological, pedochemical and biological parameters. Compared with conventional mechanical mowing, chemical treatment induced (i) a significant increase in organic matter in the upper plot layers (+18%), and (ii) a marked reduction in weed height throughout the entire period of the experiment. Irrespectively of the kind of treatment, no significance differences were detected in terms of (i) biological quality of soil (the abundance and diversity of arthropod communities did not change), and (ii) plant elemental content (bulk concentrations of analysed trace elements had a good fit within ranges of occurrence in the "reference plant"). The glyphosate partially controlled broad-leaved weeds and this moderate efficacy is dependent upon the season/time of application. In conclusion, the rational and sustainable use of chemical herbicides may be a useful tool for the management of roadside vegetation.


Asunto(s)
Glicina/análogos & derivados , Herbicidas , Malezas , Control de Malezas/métodos , Biodiversidad , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Italia , Metales/análisis , Metales/metabolismo , Estaciones del Año , Suelo/química , Emisiones de Vehículos/análisis , Control de Malezas/instrumentación , Glifosato
9.
Plants (Basel) ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611462

RESUMEN

Plants are constantly subjected to environmental changes that deeply affect their metabolism, leading to the inhibition or synthesis of "specialized" compounds, small organic molecules that play a fundamental role in adaptative responses. In this work, Melissa officinalis L. (an aromatic plant broadly cultivated due to the large amounts of secondary metabolites) plants were exposed to realistic ozone (O3) dosages (80 ppb, 5 h day-1) for 35 consecutive days with the aim to evaluate its potential use as elicitor of specialized metabolite production. Ozone induced stomatal dysfunction throughout the whole experiment, associated with a low photosynthetic performance, a decrease in the potential energy conversion activity of PSII, and an alteration in the total chlorophyll content (-35, -36, -10, and -17% as average compared to the controls, respectively). The production of hydrogen peroxide at 7 days from the beginning of exposure (+47%) resulted in lipid peroxidation and visible injuries. This result suggests metabolic disturbance within the cell and a concomitant alteration in cell homeostasis, probably due to a limited activation of antioxidative mechanisms. Moderate accumulated doses of O3 triggered the accumulation of hydroxycinnamic acids and the up-regulation of the genes encoding enzymes involved in rosmarinic acid, phenylpropanoid, and flavonoid biosynthesis. While high accumulated doses of O3 significantly enhanced the content of hydroxybenzoic acid and flavanone glycosides. Our study shows that the application of O3 at the investigated concentration for a limited period (such as two/three weeks) may become a useful tool to stimulate bioactive compounds production in M. officinalis.

10.
Environ Pollut ; 343: 123180, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142812

RESUMEN

Ozone (O3) pollution is harmful to plants and ecosystems. Several chemicals have been evaluated to protect plants against O3 deleterious effects. However, they are not adequately efficient and/or the environmental safety of their application is questioned. Hence, new chemicals that provide sufficient protection while being safer for environmental application are needed. This study investigates the response of two O3-sensitive plant species (Phaseolus vulgaris L. cv. Pinto and Nicotiana tabacum L. cv. Bel-W3) leaf-sprayed with deionized water (W, control), ethylenediurea (EDU, 1 mM) or melatonin at lower (1 mM) or higher (3 mM) concentrations (Mel_L and Mel_H, respectively), and then exposed to a square wave of 200 ppb O3, lasting 1 day (5 h day-1) for bean and 2 days (8 h day-1) for tobacco. In both species, the photosynthetic activity of O3-exposed plants was about halved. O3-induced membrane damage was also confirmed by increased malondialdehyde (MDA) byproducts compared to control (W). In EDU- and Mel-treated bean plants, the photosynthetic performance was not influenced by O3, leading to reduction of the incidence and severity of O3 visible injury. In bean plants, Mel_L mitigated the detrimental effect of O3 by boosting antioxidant enzyme activities or osmoprotectants (e.g. abscisic acid, proline, and glutathione transferase). In Mel_L-sprayed tobacco plants, O3 negatively influenced the photosynthetic activity. Conversely, Mel_H ameliorated the O3-induced oxidative stress by preserving the photosynthetic performance, preventing membrane damage, and reducing the visible injuries extent. Although EDU performed better, melatonin protected plants against O3 phytotoxicity, suggesting its potential application as a bio-safer and eco-friendlier phytoprotectant against O3. It is worth noting that the content of melatonin in EDU-treated plants remained unchanged, indicating that the protectant mode of action of EDU is not Mel-related.


Asunto(s)
Contaminantes Atmosféricos , Melatonina , Ozono , Antioxidantes/farmacología , Nicotiana , Melatonina/farmacología , Ozono/toxicidad , Ecosistema , Plantas , Contaminantes Atmosféricos/toxicidad
11.
Plant Cell Rep ; 32(12): 1965-80, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24081611

RESUMEN

KEY MESSAGE: The study focuses on the interaction between reactive oxygen species and hormones that regulate the programmed cell death in plants of Melissa officinalis exposed to ozone. Interaction between hormone and redox signaling pathways has been investigated in ozone-stressed (200 ppb, 5 h) lemon balm to verify if the response resembles the biotic defense reactions. In comparison to controls, plants exhibited foliar injury and the cell death was induced by (1) biphasic production of hydrogen peroxide and superoxide radical; (2) hormonal regulation of ozone-induced lesion formation with a significant production of ethylene, salicylic, jasmonic and abscisic acid; (3) ozone degradation to reactive oxygen species and their detoxification by some enzymatic (such as superoxide dismutase) and non-enzymatic antioxidant systems (such as ascorbic acid, glutathione and carotenoids), that worked in cooperation without providing a defense against free radicals (such as confirmed by the modification of the antioxidant properties of leaf tissue). This integrated view showed that reactive oxygen species interact with hormonal signaling pathway regulating cell death and the sensitivity of lemon balm to ozone.


Asunto(s)
Melissa/citología , Melissa/metabolismo , Ozono/farmacología , Transducción de Señal/efectos de los fármacos , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Muerte Celular/efectos de los fármacos , Disulfuro de Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Radical Hidroxilo/metabolismo , Melissa/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Superóxidos/metabolismo , Factores de Tiempo
12.
J Chem Ecol ; 38(7): 924-32, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22811004

RESUMEN

The volatiles emitted from young and old leaves of two poplar clones (Populus deltoides x maximowiczii, Eridano, and P. x euramericana, I-214) were sampled after exposure to ozone (80 ppb, 5 h d(-1), for 10 consecutive days) by solid phase microextraction and characterized by GC-MS. Only mature leaves of the ozone-sensitive Eridano clone developed necrosis in response to ozone exposure, and their membrane integrity was significantly affected by ozone (+86 and +18 % of levels of thiobarbituric acid reactive substances in mature and young leaves). The headspace of the poplar clones studied here contained mono- and sesquiterpenes, both hydrocarbons and oxygenated ones in Eridano, and only hydrocarbons in the clone I-214. Furthermore, some non-terpenes, such as C(9)-C(15) straight-chain aldehydes and C(12)-C(16) saturated and unsaturated aliphatic hydrocarbons, were detected. Other common non-terpene volatiles were oxygenated aliphatic compounds, mainly C(6)-alcohols and their acetates. Ozone exposure induced a strong change in volatile profiles, depending on clones and leaf age. Regardless of leaf age, in clone I-214, quantities of oxygenated monoterpenes tended to increase after ozone exposure, however, "O(3) x leaf age" was not significant. In clone Eridano, increases were observed in emissions of hydrocarbons and oxygenated sesquiterpenes in response to ozone treatment. (Z)-3-Hexen-1-ol and (Z)-3-hexenol acetate were present in traces in the headspace of untreated Eridano mature leaves, but quantities slightly increased after ozone treatment. Quantities of non-terpene oxygenated compounds dropped in the headspace of young leaves of both clones (-24 and -44 % in Eridano and I-214) and also in mature ones of I-214 (-50 %) after ozone exposure. Similarly, quantities of non-terpene hydrocarbons in the emissions from mature leaves of both clones (-58 and -49 %, respectively) decreased, while these compounds increased in young leaves of Eridano (+83 %). We suggest that the resistance of the poplar clone I-214 to O(3) is achieved by: i) monoterpenes constitutively present in young leaves and ii) increase of monoterpene content induced by O(3) in mature leaves.


Asunto(s)
Ozono , Populus/metabolismo , Estrés Fisiológico , Compuestos Orgánicos Volátiles/metabolismo
13.
Plants (Basel) ; 11(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35406884

RESUMEN

Antioxidants and phytohormones are hallmarks of abiotic stress responses in plants. Although it is known that they can offer cell protection or accelerate programmed cell death (PCD) depending on the level of stress, the involvement of these metabolites in stress acclimation is still not fully elucidated. Here, we showed the role of antioxidants and phytohormones in Salvia officinalis tolerance to long-term ozone (O3) exposure (120 ppb for 36 days, 5 h day-1). Salicylic acid (SA) content was increased under O3 throughout the whole experiment (+150%, as average compared with control), being required to maintain the cellular redox state and potentiate defense responses. This accumulation was induced before the production of ethylene (ET), suggesting that ET was controlled by SA during O3 exposure to modulate the magnitude of chlorosis formation and the cell redox balance (by regulating ascorbate and glutathione levels). The synthesis and/or regeneration of these antioxidants did not protect membranes from lipid peroxidation, as demonstrated by the accumulation of malondialdehyde (+23% as average). However, these processes of lipid oxidation did not include the synthesis of the membrane breakdown products, as confirmed by the unchanged values of jasmonic acid, thus indicating that this compound was not involved in the regulation of PCD strategies.

14.
Sci Total Environ ; 822: 153577, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35114241

RESUMEN

Ozone (O3) is a phytotoxic air pollutant capable of limiting plant yield and growth, and altering the quality of edible plant products. This study aimed to investigate the effects of long-term O3 exposure at realistic and future concentrations (applied during fruit development) not only on morphological, physiological, and biochemical plant/leaf traits of Vaccinium myrtillus but also on its fruit yield and quality. Three-year-old saplings were grown from May to July under three levels of O3 concentration [1.0, 1.5 and 2.0 times the ambient air concentrations, denoted as AA, 1.5_AA and 2.0_AA], using a new-generation O3 Free Air Controlled Exposure system. Ozone induced oxidative pressure and membrane denaturation as confirmed by the accumulation of anion superoxide, hydrogen peroxide (•O2-: +39 and + 29%; H2O2: +55 and + 59% in 1.5_AA and 2.0_AA, respectively, compared with AA), and malondialdehyde by-product (1.4- and 2.5-fold higher than AA, in 1.5_AA and 2.0_AA, respectively). The observed oxidative burst likely affected several cellular structures interested by photosynthetic processes (e.g., decrease of the maximum rate of carboxylation: -30%). This constraint likely induced a decline in plant vitality and a different partitioning of biomass allocation between above and below organs. An accelerated maturation of bilberries due to O3 was reported, suggesting that plants grown under harsher environmental conditions suffered from metabolic changes associated with early ripening. Increasing O3 concentrations might be responsible for an alteration of the ratio between oxidation and reduction processes mechanisms that was followed by a loss of integrity of membranes, so limiting the availability of energy/resources, triggering enzymatic oxidation of phenols to red/purple pigments, and promoting fruit maturation. To the best of our knowledge, this is the first research showing that long-term O3 exposure during bilberry fruit development influenced not only several plant/leaf traits, but also fruit nutraceutical quality at the time of harvest.


Asunto(s)
Ozono , Vaccinium myrtillus , Suplementos Dietéticos , Frutas , Peróxido de Hidrógeno/metabolismo , Ozono/análisis , Fotosíntesis , Hojas de la Planta/química , Estaciones del Año
15.
Plants (Basel) ; 11(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432912

RESUMEN

Tropospheric ozone (O3) enrichment caused by human activities can reduce important crop yields with huge economic loss and affect the global carbon cycle and climate change in the coming decades. In this study, two Italian cultivars of durum wheat (Claudio and Mongibello) were exposed to O3 (80 ppb, 5 h day-1 for 70 consecutive days), with the aim to investigate the changes in yield and biomass, ecophysiological traits, and stable carbon and nitrogen isotope values in plants, and to compare the stable isotope responses under environmental stressors. Both cultivars showed a relative O3 tolerance in terms of photosynthetic performance, but in cultivar Mongibello, O3 was detrimental to the grain yield and plant biomass. The δ13C values in the leaves of plants identified that the impact of O3 on CO2 fixation by RuBisCO was dominant. The δ15N value showed significant differences between treatments in both cultivars at seven days from the beginning of the exposure, which could be considered an early indicator of ozone pollution. Under increasingly frequent extreme climates globally, the relationships among stable isotope data, ecophysiological traits, and agronomic parameters could help breed future cultivars.

16.
Plants (Basel) ; 10(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34834720

RESUMEN

Durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn) is a staple crop of the Mediterranean countries, where more frequent waterlogging events are predicted due to climate change. However, few investigations have been conducted on the physiological and agronomic responses of this crop to waterlogging. The present study provides a comprehensive evaluation of the effects of two waterlogging durations (i.e., 14 and 35 days) on two durum wheat cultivars (i.e., Svevo and Emilio Lepido). An integrated analysis of an array of physiological, biochemical, biometric, and yield parameters was performed at the end of the waterlogging events, during recovery, and at physiological maturity. Results established that effects on durum wheat varied depending on waterlogging duration. This stress imposed at tillering impaired photosynthetic activity of leaves and determined oxidative injury of the roots. The physiological damages could not be fully recovered, subsequently slowing down tiller formation and crop growth, and depressing the final grain yield. Furthermore, differences in waterlogging tolerance between cultivars were discovered. Our results demonstrate that in durum wheat, the energy maintenance, the cytosolic ion homeostasis, and the ROS control and detoxification can be useful physiological and biochemical parameters to consider for the waterlogging tolerance of genotypes, with regard to sustaining biomass production and grain yield.

17.
Antioxidants (Basel) ; 9(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327632

RESUMEN

Specialized metabolites constitute a major antioxidant system involved in plant defence against environmental constraints, such as tropospheric ozone (O3). The objective of this experiment was to give a thorough description of the effects of an O3 pulse (120 ppb, 5 h) on the phenylpropanoid metabolism of sage, at both biochemical and molecular levels. Variable O3-induced changes were observed over time among the detected phenylpropanoid compounds (mostly identified as phenolic acids and flavonoids), likely because of their extraordinary functional diversity. Furthermore, decreases in the phenylalanine ammonia-lyase (PAL), phenol oxidase (PPO), and rosmarinic acid synthase (RAS) activities were reported during the first hours of treatment, probably due to an O3-induced oxidative damage to proteins. Both PAL and PPO activities were also suppressed at 24 h from the beginning of exposure, whereas enhanced RAS activity occurred at the end of treatment and at the recovery time, suggesting that specific branches of the phenolic pathways were activated. The increased RAS activity was accompanied by the up-regulation of the transcript levels of genes like RAS, tyrosine aminotransferase, and cinnamic acid 4-hydroxylase. In conclusion, sage faced the O3 pulse by regulating the activation of the phenolic biosynthetic route as an integrated defence mechanism.

18.
Sci Rep ; 10(1): 1959, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029804

RESUMEN

The final stage of leaf ontogenesis is represented by senescence, a highly regulated process driven by a sequential cellular breakdown involving, as the first step, chloroplast dismantling with consequent reduction of photosynthetic efficiency. Different processes, such as pigment accumulation, could protect the vulnerable photosynthetic apparatus of senescent leaves. Although several studies have produced transcriptomic data on foliar senescence, just few works have attempted to explain differences in red and green leaves throughout ontogenesis. In this work, a transcriptomic approach was used on green and red leaves of Prunus cerasifera to unveil molecular differences from leaf maturity to senescence. Our analysis revealed a higher gene regulation in red leaves compared to green ones, during leaf transition. Most of the observed DEGs were shared and involved in transcription factor activities, senescing processes and cell wall remodelling. Significant differences were detected in cellular functions: genes related to photosystem I and II were highly down-regulated in the green genotype, whereas transcripts involved in flavonoid biosynthesis, such as UDP glucose-flavonoid-3-O-glucosyltransferase (UFGT) were exclusively up-regulated in red leaves. In addition, cellular functions involved in stress response (glutathione-S-transferase, Pathogen-Related) and sugar metabolism, such as three threalose-6-phosphate synthases, were activated in senescent red leaves. In conclusion, data suggests that P. cerasifera red genotypes can regulate a set of genes and molecular mechanisms that cope with senescence, promoting more advantages during leaf ontogenesis than compared to the green ones.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Prunus domestica/fisiología , Senescencia Celular/genética , Color , Regulación hacia Abajo , Flavonoides/biosíntesis , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Regulación hacia Arriba
19.
J Environ Monit ; 11(4): 736-44, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19557223

RESUMEN

Two groups assessed ozone symptoms on tobacco leaves: one was represented by young students and the other by scientists with experience in plant biology, but not experienced scorers. In the first case, results demonstrate that in the first week of exposure the extent of injury is almost always overestimated, but in the second week it is correctly evaluated or slightly underestimated: this can be due to the variable ambient ozone levels. In the second case, the average accuracy levels ranged from 40 to 82%, with an average repeatability of 95.2%. Central classes of damage are more difficult to evaluate: this may depend on the fact that two leaves may have similar total injured area, but substantially different number and spatial distribution of the lesions. Some practical suggestions in order to reduce non-sampling errors and to improve operator training are given.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Nicotiana/efectos de los fármacos , Ozono/análisis , Adulto , Contaminantes Atmosféricos/farmacología , Femenino , Geografía , Humanos , Italia , Persona de Mediana Edad , Ozono/farmacología , Proyectos Piloto , Hojas de la Planta/efectos de los fármacos , Reproducibilidad de los Resultados , Estudiantes , Enseñanza
20.
Environ Monit Assess ; 149(1-4): 143-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18253852

RESUMEN

A survey, based on the use of vascular plants to describe the distribution of selected elements (21 in total) was performed in 11 sites in the area of Castelfiorentino (Tuscany, Central Italy) differing for land use, from urban to industrial and rural areas. Lettuce plants grown under standardized conditions were positively used as biodeposimeters of airborne trace elements. Washing was found to be highly significant in reducing concentrations of many elements in the samples, suggesting a general surface contamination of leaves. The typical crustal element Al showed good correlations with Co, Fe, Li and V; on the contrary, Zn and Cd were intercorrelated and showed no connection with crustal indicators. Lead was still a relevant environmental presence, as the experiments were carried out before the ban of leaded gasoline. Source apportionment by factor analysis put in evidence a major contribution of crustal materials, followed by man-related activities; a minor role was ascertained for marine aerosol. A comparison was made between analytical data of lettuce plants grown in our experimental sites and a bulk of commercial lettuce purchased at a local supermarket. It should be stressed how Cu concentrations of commercial material were significantly higher than those found in our plants; this is likely caused by phytosanitary treatments.


Asunto(s)
Elementos Químicos , Contaminantes Ambientales/análisis , Lactuca , Humanos , Italia , Lactuca/química , Lactuca/metabolismo , Hojas de la Planta/química , Características de la Residencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA